feat: Field struct and creation and annihilation sections

This commit is contained in:
jstoobysmith 2025-01-06 10:45:50 +00:00
parent 83908c6d0d
commit fb31135426
5 changed files with 422 additions and 0 deletions

View file

@ -0,0 +1,78 @@
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.FieldStruct.Basic
import HepLean.PerturbationTheory.CreateAnnihilate
/-!
# Creation and annihlation parts of fields
-/
namespace FieldStruct
variable (𝓕 : FieldStruct)
/-- To each state the specificaition of the type of creation and annihlation parts.
For asymptotic staes there is only one allowed part, whilst for position states
there is two. -/
def statesToCreateAnnihilateType : 𝓕.States → Type
| States.negAsymp _ => Unit
| States.position _ => CreateAnnihilate
| States.posAsymp _ => Unit
/-- The instance of a finite type on `𝓕.statesToCreateAnnihilateType i`. -/
instance : ∀ i, Fintype (𝓕.statesToCreateAnnihilateType i) := fun i =>
match i with
| States.negAsymp _ => inferInstanceAs (Fintype Unit)
| States.position _ => inferInstanceAs (Fintype CreateAnnihilate)
| States.posAsymp _ => inferInstanceAs (Fintype Unit)
/-- The instance of a decidable equality on `𝓕.statesToCreateAnnihilateType i`. -/
instance : ∀ i, DecidableEq (𝓕.statesToCreateAnnihilateType i) := fun i =>
match i with
| States.negAsymp _ => inferInstanceAs (DecidableEq Unit)
| States.position _ => inferInstanceAs (DecidableEq CreateAnnihilate)
| States.posAsymp _ => inferInstanceAs (DecidableEq Unit)
/-- The equivalence between `𝓕.statesToCreateAnnihilateType i` and
`𝓕.statesToCreateAnnihilateType j` from an equality `i = j`. -/
def statesToCreateAnnihilateTypeCongr : {i j : 𝓕.States} → i = j →
𝓕.statesToCreateAnnihilateType i ≃ 𝓕.statesToCreateAnnihilateType j
| _, _, rfl => Equiv.refl _
/-- A creation and annihlation state is a state plus an valid specification of the
creation or annihliation part of that state. (For asympotic states there is only one valid
choice). -/
def CreateAnnihilateStates : Type := Σ (s : 𝓕.States), 𝓕.statesToCreateAnnihilateType s
/-- The map from creation and annihlation states to their underlying states. -/
def createAnnihilateStatesToStates : 𝓕.CreateAnnihilateStates → 𝓕.States := Sigma.fst
@[simp]
lemma createAnnihilateStatesToStates_prod (s : 𝓕.States) (t : 𝓕.statesToCreateAnnihilateType s) :
𝓕.createAnnihilateStatesToStates ⟨s, t⟩ = s := rfl
/-- The map from creation and annihlation states to the type `CreateAnnihilate`
specifying if a state is a creation or an annihilation state. -/
def createAnnihlateStatesToCreateAnnihilate : 𝓕.CreateAnnihilateStates → CreateAnnihilate
| ⟨States.negAsymp _, _⟩ => CreateAnnihilate.create
| ⟨States.position _, CreateAnnihilate.create⟩ => CreateAnnihilate.create
| ⟨States.position _, CreateAnnihilate.annihilate⟩ => CreateAnnihilate.annihilate
| ⟨States.posAsymp _, _⟩ => CreateAnnihilate.annihilate
/-- The normal ordering on creation and annihlation states. -/
def normalOrder : 𝓕.CreateAnnihilateStates → 𝓕.CreateAnnihilateStates → Prop :=
fun a b => CreateAnnihilate.normalOrder (𝓕.createAnnihlateStatesToCreateAnnihilate a)
(𝓕.createAnnihlateStatesToCreateAnnihilate b)
/-- Normal ordering is total. -/
instance : IsTotal 𝓕.CreateAnnihilateStates 𝓕.normalOrder where
total _ _ := total_of CreateAnnihilate.normalOrder _ _
/-- Normal ordering is transitive. -/
instance : IsTrans 𝓕.CreateAnnihilateStates 𝓕.normalOrder where
trans _ _ _ := fun h h' => IsTrans.trans (α := CreateAnnihilate) _ _ _ h h'
end FieldStruct