feat: Field struct and creation and annihilation sections

This commit is contained in:
jstoobysmith 2025-01-06 10:45:50 +00:00
parent 83908c6d0d
commit fb31135426
5 changed files with 422 additions and 0 deletions

View file

@ -0,0 +1,216 @@
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.FieldStruct.CreateAnnihilate
import HepLean.PerturbationTheory.CreateAnnihilate
/-!
# Creation and annihlation sections
-/
namespace FieldStruct
variable {𝓕 : FieldStruct}
/-- The sections in `𝓕.CreateAnnihilateStates` over a list `φs : List 𝓕.States`.
In terms of physics, given some fields `φ₁...φₙ`, the different ways one can associate
each field as a `creation` or an `annilation` operator. E.g. the number of terms
`φ₁⁰φ₂¹...φₙ⁰` `φ₁¹φ₂¹...φₙ⁰` etc. If some fields are exclusively creation or annhilation
operators at this point (e.g. ansymptotic states) this is accounted for. -/
def CreateAnnihilateSect (φs : List 𝓕.States) : Type :=
{ψs : List 𝓕.CreateAnnihilateStates //
List.map 𝓕.createAnnihilateStatesToStates ψs = φs}
-- Π i, 𝓕.statesToCreateAnnihilateType (φs.get i)
namespace CreateAnnihilateSect
variable {𝓕 : FieldStruct} {φs : List 𝓕.States}
@[simp]
lemma length_eq (ψs : CreateAnnihilateSect φs) : ψs.1.length = φs.length := by
simpa using congrArg List.length ψs.2
/-- The tail of a section for `φs`. -/
def tail : {φs : List 𝓕.States} → (ψs : CreateAnnihilateSect φs) → CreateAnnihilateSect φs.tail
| [], ⟨[], h⟩ => ⟨[], h⟩
| φ :: φs, ⟨[], h⟩ => False.elim (by simp at h)
| φ :: φs, ⟨ψ :: ψs, h⟩ => ⟨ψs, by rw [List.map_cons, List.cons.injEq] at h; exact h.2⟩
lemma head_state_eq {φ : 𝓕.States} : (ψs : CreateAnnihilateSect (φ :: φs)) →
(ψs.1.head (by simp [← List.length_pos_iff_ne_nil])).1 = φ
| ⟨[], h⟩ => False.elim (by simp at h)
| ⟨ψ :: ψs, h⟩ => by
simp at h
exact h.1
/-- The head of a section for `φ :: φs` as an element in `𝓕.statesToCreateAnnihilateType φ`. -/
def head : {φ : 𝓕.States} → (ψs : CreateAnnihilateSect (φ :: φs)) →
𝓕.statesToCreateAnnihilateType φ
| φ, ⟨[], h⟩ => False.elim (by simp at h)
| φ, ⟨ψ :: ψs, h⟩ => 𝓕.statesToCreateAnnihilateTypeCongr (by
simpa using head_state_eq ⟨ψ :: ψs, h⟩) ψ.2
lemma eq_head_cons_tail {φ : 𝓕.States} {ψs : CreateAnnihilateSect (φ :: φs)} :
ψs.1 = ⟨φ, head ψs⟩ :: ψs.tail.1 := by
match ψs with
| ⟨[], h⟩ => exact False.elim (by simp at h)
| ⟨ψ :: ψs, h⟩ =>
have h2 := head_state_eq ⟨ψ :: ψs, h⟩
simp at h2
subst h2
rfl
/-- The creation of a section from for `φ : φs` from a section for `φs` and a
element of `𝓕.statesToCreateAnnihilateType φ`. -/
def cons {φ : 𝓕.States} (ψ : 𝓕.statesToCreateAnnihilateType φ) (ψs : CreateAnnihilateSect φs) :
CreateAnnihilateSect (φ :: φs) := ⟨⟨φ, ψ⟩ :: ψs.1, by
simp [List.map_cons, ψs.2]⟩
/-- The creation and annihlation sections for a singleton list is given by
a choice of `𝓕.statesToCreateAnnihilateType φ`. If `φ` is a asymptotic state
there is no choice here, else there are two choices. -/
def singletonEquiv {φ : 𝓕.States} : CreateAnnihilateSect [φ] ≃
𝓕.statesToCreateAnnihilateType φ where
toFun ψs := ψs.head
invFun ψ := ⟨[⟨φ, ψ⟩], by simp⟩
left_inv ψs := by
apply Subtype.ext
simp
have h1 := eq_head_cons_tail (ψs := ψs)
rw [h1]
have h2 := ψs.tail.2
simp at h2
simp [h2]
right_inv ψ := by
simp [head]
rfl
/-- An equivalence seperating the head of a creation and annhilation section
from the tail. -/
def consEquiv {φ : 𝓕.States} {φs : List 𝓕.States} : CreateAnnihilateSect (φ :: φs) ≃
𝓕.statesToCreateAnnihilateType φ × CreateAnnihilateSect φs where
toFun ψs := ⟨ψs.head, ψs.tail⟩
invFun ψψs :=
match ψψs with
| (ψ, ψs) => cons ψ ψs
left_inv ψs := by
apply Subtype.ext
exact Eq.symm eq_head_cons_tail
right_inv ψψs := by
match ψψs with
| (ψ, ψs) => rfl
/-- The equivalence between `CreateAnnihilateSect φs` and
`CreateAnnihilateSect φs'` induced by an equality `φs = φs'`. -/
def congr : {φs φs' : List 𝓕.States} → (h : φs = φs') →
CreateAnnihilateSect φs ≃ CreateAnnihilateSect φs'
| _, _, rfl => Equiv.refl _
@[simp]
lemma congr_fst {φs φs' : List 𝓕.States} (h : φs = φs') (ψs : CreateAnnihilateSect φs) :
(congr h ψs).1 = ψs.1 := by
cases h
rfl
/-- Returns the first `n` elements of a section and its underlying list. -/
def take (n : ) (ψs : CreateAnnihilateSect φs) : CreateAnnihilateSect (φs.take n) :=
⟨ψs.1.take n, by simp [ψs.2]⟩
/-- Removes the first `n` elements of a section and its underlying list. -/
def drop (n : ) (ψs : CreateAnnihilateSect φs) : CreateAnnihilateSect (φs.drop n) :=
⟨ψs.1.drop n, by simp [ψs.2]⟩
/-- Appends two sections and their underlying lists. -/
def append {φs φs' : List 𝓕.States} (ψs : CreateAnnihilateSect φs)
(ψs' : CreateAnnihilateSect φs') : CreateAnnihilateSect (φs ++ φs') :=
⟨ψs.1 ++ ψs'.1, by simp [ψs.2, ψs'.2]⟩
@[simp]
lemma take_append_drop {n : } (ψs : CreateAnnihilateSect φs) :
append (take n ψs) (drop n ψs) = congr (List.take_append_drop n φs).symm ψs := by
apply Subtype.ext
simp [take, drop, append]
@[simp]
lemma congr_append {φs1 φs1' φs2 φs2' : List 𝓕.States}
(h1 : φs1 = φs1') (h2 : φs2 = φs2')
(ψs1 : CreateAnnihilateSect φs1) (ψs2 : CreateAnnihilateSect φs2) :
(append (congr h1 ψs1) (congr h2 ψs2)) = congr (by rw [h1, h2]) (append ψs1 ψs2) := by
subst h1 h2
rfl
@[simp]
lemma take_left {φs φs' : List 𝓕.States} (ψs : CreateAnnihilateSect φs)
(ψs' : CreateAnnihilateSect φs') :
take φs.length (ψs.append ψs') = congr (by simp) ψs := by
apply Subtype.ext
simp [take, append]
@[simp]
lemma drop_left {φs φs' : List 𝓕.States} (ψs : CreateAnnihilateSect φs)
(ψs' : CreateAnnihilateSect φs') :
drop φs.length (ψs.append ψs') = congr (by simp) ψs' := by
apply Subtype.ext
simp [drop, append]
/-- The equivalence between `CreateAnnihilateSect (φs ++ φs')` and
`CreateAnnihilateSect φs × CreateAnnihilateSect φs` formed by `append`, `take`
and `drop` and their interrelationship. -/
def appendEquiv {φs φs' : List 𝓕.States} : CreateAnnihilateSect (φs ++ φs') ≃
CreateAnnihilateSect φs × CreateAnnihilateSect φs' where
toFun ψs := (congr (List.take_left φs φs') (take φs.length ψs),
congr (List.drop_left φs φs') (drop φs.length ψs))
invFun ψsψs' := append ψsψs'.1 ψsψs'.2
left_inv ψs := by
apply Subtype.ext
simp
right_inv ψsψs' := by
match ψsψs' with
| (ψs, ψs') =>
simp
refine And.intro (Subtype.ext ?_) (Subtype.ext ?_)
· simp
· simp
@[simp]
lemma _root_.List.map_eraseIdx {α β : Type} (f : α → β) : (l : List α) → (n : ) →
List.map f (l.eraseIdx n) = (List.map f l).eraseIdx n
| [], _ => rfl
| a :: l, 0 => rfl
| a :: l, n+1 => by
simp only [List.eraseIdx, List.map_cons, List.cons.injEq, true_and]
exact List.map_eraseIdx f l n
/-- Erasing an element from a section and it's underlying list. -/
def eraseIdx (n : ) (ψs : CreateAnnihilateSect φs) : CreateAnnihilateSect (φs.eraseIdx n) :=
⟨ψs.1.eraseIdx n, by simp [ψs.2]⟩
/-- The equivalence formed by extracting an element from a section. -/
def eraseIdxEquiv (n : ) (φs : List 𝓕.States) (hn : n < φs.length) :
CreateAnnihilateSect φs ≃ 𝓕.statesToCreateAnnihilateType φs[n] ×
CreateAnnihilateSect (φs.eraseIdx n) :=
(congr (by simp only [List.take_concat_get', List.take_append_drop])).trans <|
appendEquiv.trans <|
(Equiv.prodCongr (appendEquiv.trans (Equiv.prodComm _ _)) (Equiv.refl _)).trans <|
(Equiv.prodAssoc _ _ _).trans <|
Equiv.prodCongr singletonEquiv <|
appendEquiv.symm.trans <|
congr (List.eraseIdx_eq_take_drop_succ φs n).symm
@[simp]
lemma eraseIdxEquiv_apply_snd {n : } (ψs : CreateAnnihilateSect φs) (hn : n < φs.length) :
(eraseIdxEquiv n φs hn ψs).snd = eraseIdx n ψs := by
apply Subtype.ext
simp only [eraseIdxEquiv, appendEquiv, take, List.take_concat_get', List.length_take, drop,
append, Equiv.trans_apply, Equiv.coe_fn_mk, congr_fst, Equiv.prodCongr_apply, Equiv.coe_trans,
Equiv.coe_prodComm, Equiv.coe_refl, Prod.map_apply, Function.comp_apply, Prod.swap_prod_mk,
id_eq, Equiv.prodAssoc_apply, Equiv.coe_fn_symm_mk, eraseIdx]
rw [Nat.min_eq_left (Nat.le_of_succ_le hn), Nat.min_eq_left hn, List.take_take]
simp only [Nat.succ_eq_add_one, le_add_iff_nonneg_right, zero_le, inf_of_le_left]
exact Eq.symm (List.eraseIdx_eq_take_drop_succ ψs.1 n)
end CreateAnnihilateSect
end FieldStruct