refactor: Remove ProtoOperatorAlgebra
This commit is contained in:
parent
c18b4850e5
commit
fc20099282
15 changed files with 615 additions and 792 deletions
|
@ -439,12 +439,28 @@ def ofFieldOpList (φs : List 𝓕.States) : 𝓕.FieldOpAlgebra := ι (ofStateL
|
|||
lemma ofFieldOpList_eq_ι_ofStateList (φs : List 𝓕.States) :
|
||||
ofFieldOpList φs = ι (ofStateList φs) := rfl
|
||||
|
||||
lemma ofFieldOpList_append (φs ψs : List 𝓕.States) :
|
||||
ofFieldOpList (φs ++ ψs) = ofFieldOpList φs * ofFieldOpList ψs := by
|
||||
simp only [ofFieldOpList]
|
||||
rw [ofStateList_append]
|
||||
simp
|
||||
|
||||
lemma ofFieldOpList_singleton (φ : 𝓕.States) :
|
||||
ofFieldOpList [φ] = ofFieldOp φ := by
|
||||
simp only [ofFieldOpList, ofFieldOp, ofStateList_singleton]
|
||||
|
||||
/-- An element of `FieldOpAlgebra` from a `CrAnStates`. -/
|
||||
def ofCrAnFieldOp (φ : 𝓕.CrAnStates) : 𝓕.FieldOpAlgebra := ι (ofCrAnState φ)
|
||||
|
||||
lemma ofCrAnFieldOp_eq_ι_ofCrAnState (φ : 𝓕.CrAnStates) :
|
||||
ofCrAnFieldOp φ = ι (ofCrAnState φ) := rfl
|
||||
|
||||
lemma ofFieldOp_eq_sum (φ : 𝓕.States) :
|
||||
ofFieldOp φ = (∑ i : 𝓕.statesToCrAnType φ, ofCrAnFieldOp ⟨φ, i⟩) := by
|
||||
rw [ofFieldOp, ofState]
|
||||
simp only [map_sum]
|
||||
rfl
|
||||
|
||||
/-- An element of `FieldOpAlgebra` from a list of `CrAnStates`. -/
|
||||
def ofCrAnFieldOpList (φs : List 𝓕.CrAnStates) : 𝓕.FieldOpAlgebra := ι (ofCrAnList φs)
|
||||
|
||||
|
@ -461,6 +477,12 @@ lemma ofCrAnFieldOpList_singleton (φ : 𝓕.CrAnStates) :
|
|||
ofCrAnFieldOpList [φ] = ofCrAnFieldOp φ := by
|
||||
simp only [ofCrAnFieldOpList, ofCrAnFieldOp, ofCrAnList_singleton]
|
||||
|
||||
lemma ofFieldOpList_eq_sum (φs : List 𝓕.States) :
|
||||
ofFieldOpList φs = ∑ s : CrAnSection φs, ofCrAnFieldOpList s.1 := by
|
||||
rw [ofFieldOpList, ofStateList_sum]
|
||||
simp only [map_sum]
|
||||
rfl
|
||||
|
||||
/-- The annihilation part of a state. -/
|
||||
def anPart (φ : 𝓕.States) : 𝓕.FieldOpAlgebra := ι (anPartF φ)
|
||||
|
||||
|
@ -503,5 +525,10 @@ lemma crPart_posAsymp (φ : 𝓕.OutgoingAsymptotic) :
|
|||
crPart (States.outAsymp φ) = 0 := by
|
||||
simp [crPart]
|
||||
|
||||
lemma ofFieldOp_eq_crPart_add_anPart (φ : 𝓕.States) :
|
||||
ofFieldOp φ = crPart φ + anPart φ := by
|
||||
rw [ofFieldOp, crPart, anPart, ofState_eq_crPartF_add_anPartF]
|
||||
simp only [map_add]
|
||||
|
||||
end FieldOpAlgebra
|
||||
end FieldSpecification
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue