refactor: Remove ProtoOperatorAlgebra

This commit is contained in:
jstoobysmith 2025-01-30 11:00:25 +00:00
parent c18b4850e5
commit fc20099282
15 changed files with 615 additions and 792 deletions

View file

@ -17,9 +17,9 @@ Wick's theorem is related to Isserlis' theorem in mathematics.
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification} {𝓞 : 𝓕.ProtoOperatorAlgebra}
variable {𝓕 : FieldSpecification}
open CrAnAlgebra
open ProtoOperatorAlgebra
open FieldOpAlgebra
open HepLean.List
open WickContraction
open FieldStatistic
@ -35,15 +35,15 @@ Let `c` be a Wick Contraction for `φs := φ₀φ₁…φₙ`.
We have (roughly) `𝓝ᶠ([φsΛ ↩Λ φ i none]ᵘᶜ) = s • 𝓝ᶠ(φ :: [φsΛ]ᵘᶜ)`
Where `s` is the exchange sign for `φ` and the uncontracted fields in `φ₀φ₁…φᵢ₋₁`.
-/
lemma normalOrderF_uncontracted_none (φ : 𝓕.States) (φs : List 𝓕.States)
lemma normalOrder_uncontracted_none (φ : 𝓕.States) (φs : List 𝓕.States)
(i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) :
𝓞.crAnF (𝓝ᶠ([φsΛ ↩Λ φ i none]ᵘᶜ))
𝓝(ofFieldOpList [φsΛ ↩Λ φ i none]ᵘᶜ)
= 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, φsΛ.uncontracted.filter (fun x => i.succAbove x < i)⟩) •
𝓞.crAnF 𝓝ᶠ(φ :: [φsΛ]ᵘᶜ) := by
𝓝(ofFieldOpList (φ :: [φsΛ]ᵘᶜ)) := by
simp only [Nat.succ_eq_add_one, instCommGroup.eq_1]
rw [crAnF_ofState_normalOrderF_insert φ [φsΛ]ᵘᶜ
rw [ofFieldOpList_normalOrder_insert φ [φsΛ]ᵘᶜ
⟨(φsΛ.uncontractedListOrderPos i), by simp [uncontractedListGet]⟩, smul_smul]
trans (1 : ) • 𝓞.crAnF (𝓝ᶠ(ofStateList [φsΛ ↩Λ φ i none]ᵘᶜ))
trans (1 : ) • (𝓝(ofFieldOpList [φsΛ ↩Λ φ i none]ᵘᶜ))
· simp
congr 1
simp only [instCommGroup.eq_1, uncontractedListGet]
@ -105,10 +105,10 @@ We have (roughly) `N(c ↩Λ φ i k).uncontractedList`
is equal to `N((c.uncontractedList).eraseIdx k')`
where `k'` is the position in `c.uncontractedList` corresponding to `k`.
-/
lemma normalOrderF_uncontracted_some (φ : 𝓕.States) (φs : List 𝓕.States)
lemma normalOrder_uncontracted_some (φ : 𝓕.States) (φs : List 𝓕.States)
(i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) (k : φsΛ.uncontracted) :
𝓞.crAnF 𝓝ᶠ([φsΛ ↩Λ φ i (some k)]ᵘᶜ)
= 𝓞.crAnF 𝓝ᶠ((optionEraseZ [φsΛ]ᵘᶜ φ ((uncontractedStatesEquiv φs φsΛ) k))) := by
𝓝(ofFieldOpList [φsΛ ↩Λ φ i (some k)]ᵘᶜ)
= 𝓝(ofFieldOpList (optionEraseZ [φsΛ]ᵘᶜ φ ((uncontractedStatesEquiv φs φsΛ) k))) := by
simp only [Nat.succ_eq_add_one, insertAndContract, optionEraseZ, uncontractedStatesEquiv,
Equiv.optionCongr_apply, Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply,
Fin.coe_cast, uncontractedListGet]
@ -152,12 +152,12 @@ The proof of this result relies primarily on:
-/
lemma wick_term_none_eq_wick_term_cons (φ : 𝓕.States) (φs : List 𝓕.States)
(i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) :
(φsΛ ↩Λ φ i none).sign • (φsΛ ↩Λ φ i none).timeContract 𝓞
* 𝓞.crAnF 𝓝ᶠ([φsΛ ↩Λ φ i none]ᵘᶜ) =
(φsΛ ↩Λ φ i none).sign • (φsΛ ↩Λ φ i none).timeContract
* 𝓝(ofFieldOpList [φsΛ ↩Λ φ i none]ᵘᶜ) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun k => i.succAbove k < i))⟩)
• (φsΛ.sign • φsΛ.timeContract 𝓞 * 𝓞.crAnF 𝓝ᶠ(φ :: [φsΛ]ᵘᶜ)) := by
• (φsΛ.sign • φsΛ.timeContract * 𝓝(ofFieldOpList (φ :: [φsΛ]ᵘᶜ))) := by
by_cases hg : GradingCompliant φs φsΛ
· rw [normalOrderF_uncontracted_none, sign_insert_none]
· rw [normalOrder_uncontracted_none, sign_insert_none]
simp only [Nat.succ_eq_add_one, timeContract_insertAndContract_none, instCommGroup.eq_1,
Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_smul]
congr 1
@ -202,18 +202,18 @@ lemma wick_term_some_eq_wick_term_optionEraseZ (φ : 𝓕.States) (φs : List
(i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) (k : φsΛ.uncontracted)
(hlt : ∀ (k : Fin φs.length), timeOrderRel φ φs[k])
(hn : ∀ (k : Fin φs.length), i.succAbove k < i → ¬ timeOrderRel φs[k] φ) :
(φsΛ ↩Λ φ i (some k)).sign • (φsΛ ↩Λ φ i (some k)).timeContract 𝓞
* 𝓞.crAnF 𝓝ᶠ([φsΛ ↩Λ φ i (some k)]ᵘᶜ) =
(φsΛ ↩Λ φ i (some k)).sign • (φsΛ ↩Λ φ i (some k)).timeContract
* 𝓝(ofFieldOpList [φsΛ ↩Λ φ i (some k)]ᵘᶜ) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun x => i.succAbove x < i))⟩)
• (φsΛ.sign • (𝓞.contractStateAtIndex φ [φsΛ]ᵘᶜ
((uncontractedStatesEquiv φs φsΛ) (some k)) * φsΛ.timeContract 𝓞)
* 𝓞.crAnF 𝓝ᶠ((optionEraseZ [φsΛ]ᵘᶜ φ (uncontractedStatesEquiv φs φsΛ k)))) := by
• (φsΛ.sign • (contractStateAtIndex φ [φsΛ]ᵘᶜ
((uncontractedStatesEquiv φs φsΛ) (some k)) * φsΛ.timeContract)
* 𝓝(ofFieldOpList (optionEraseZ [φsΛ]ᵘᶜ φ (uncontractedStatesEquiv φs φsΛ k)))) := by
by_cases hg : GradingCompliant φs φsΛ ∧ (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[k.1])
· by_cases hk : i.succAbove k < i
· rw [WickContraction.timeConract_insertAndContract_some_eq_mul_contractStateAtIndex_not_lt]
swap
· exact hn _ hk
rw [normalOrderF_uncontracted_some, sign_insert_some]
rw [normalOrder_uncontracted_some, sign_insert_some]
simp only [instCommGroup.eq_1, smul_smul, Algebra.smul_mul_assoc]
congr 1
rw [mul_assoc, mul_comm (sign φs φsΛ), ← mul_assoc]
@ -224,7 +224,7 @@ lemma wick_term_some_eq_wick_term_optionEraseZ (φ : 𝓕.States) (φs : List
rw [WickContraction.timeConract_insertAndContract_some_eq_mul_contractStateAtIndex_lt]
swap
· exact hlt _
rw [normalOrderF_uncontracted_some]
rw [normalOrder_uncontracted_some]
rw [sign_insert_some]
simp only [instCommGroup.eq_1, smul_smul, Algebra.smul_mul_assoc]
congr 1
@ -245,14 +245,14 @@ lemma wick_term_some_eq_wick_term_optionEraseZ (φ : 𝓕.States) (φs : List
· simp only [h1, ↓reduceIte, MulMemClass.coe_mul]
rw [timeContract_zero_of_diff_grade]
simp only [zero_mul, smul_zero]
rw [crAnF_superCommuteF_anPartF_ofState_diff_grade_zero]
rw [superCommute_anPart_ofState_diff_grade_zero]
simp only [zero_mul, smul_zero]
exact hg
exact hg
· simp only [h1, ↓reduceIte, MulMemClass.coe_mul]
rw [timeContract_zero_of_diff_grade]
simp only [zero_mul, smul_zero]
rw [crAnF_superCommuteF_anPartF_ofState_diff_grade_zero]
rw [superCommute_anPart_ofState_diff_grade_zero]
simp only [zero_mul, smul_zero]
exact hg
exact fun a => hg (id (Eq.symm a))
@ -277,11 +277,11 @@ The proof of this result primarily depends on
lemma wick_term_cons_eq_sum_wick_term (φ : 𝓕.States) (φs : List 𝓕.States) (i : Fin φs.length.succ)
(φsΛ : WickContraction φs.length) (hlt : ∀ (k : Fin φs.length), timeOrderRel φ φs[k])
(hn : ∀ (k : Fin φs.length), i.succAbove k < i → ¬timeOrderRel φs[k] φ) :
(φsΛ.sign • φsΛ.timeContract 𝓞) * 𝓞.crAnF ((CrAnAlgebra.ofState φ) * 𝓝ᶠ([φsΛ]ᵘᶜ)) =
(φsΛ.sign • φsΛ.timeContract) * ((ofFieldOp φ) * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun x => i.succAbove x < i))⟩) •
∑ (k : Option φsΛ.uncontracted), ((φsΛ ↩Λ φ i k).sign •
(φsΛ ↩Λ φ i k).timeContract 𝓞 * 𝓞.crAnF (𝓝ᶠ([φsΛ ↩Λ φ i k]ᵘᶜ))) := by
rw [crAnF_ofState_mul_normalOrderF_ofStatesList_eq_sum, Finset.mul_sum,
(φsΛ ↩Λ φ i k).timeContract * (𝓝(ofFieldOpList [φsΛ ↩Λ φ i k]ᵘᶜ))) := by
rw [ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum, Finset.mul_sum,
uncontractedStatesEquiv_list_sum, Finset.smul_sum]
simp only [instCommGroup.eq_1, Nat.succ_eq_add_one]
congr 1
@ -305,7 +305,7 @@ lemma wick_term_cons_eq_sum_wick_term (φ : 𝓕.States) (φs : List 𝓕.States
rw [one_mul]
· rw [← mul_assoc]
congr 1
have ht := (WickContraction.timeContract 𝓞 φsΛ).prop
have ht := (WickContraction.timeContract φsΛ).prop
rw [@Subalgebra.mem_center_iff] at ht
rw [ht]
@ -317,21 +317,26 @@ lemma wick_term_cons_eq_sum_wick_term (φ : 𝓕.States) (φs : List 𝓕.States
/-- Wick's theorem for the empty list. -/
lemma wicks_theorem_nil :
𝓞.crAnF (𝓣ᶠ(ofStateList [])) = ∑ (nilΛ : WickContraction [].length),
(nilΛ.sign • nilΛ.timeContract 𝓞) * 𝓞.crAnF 𝓝ᶠ([nilΛ]ᵘᶜ) := by
rw [timeOrderF_ofStateList_nil]
𝓣(ofFieldOpList (𝓕 := 𝓕) []) = ∑ (nilΛ : WickContraction [].length),
(nilΛ.sign (𝓕 := 𝓕) • nilΛ.timeContract) * 𝓝(ofFieldOpList [nilΛ]ᵘᶜ) := by
rw [timeOrder_ofFieldOpList_nil]
simp only [map_one, List.length_nil, Algebra.smul_mul_assoc]
rw [sum_WickContraction_nil, uncontractedListGet, nil_zero_uncontractedList]
simp only [List.map_nil]
have h1 : ofStateList (𝓕 := 𝓕) [] = CrAnAlgebra.ofCrAnList [] := by simp
rw [h1, normalOrderF_ofCrAnList]
simp [WickContraction.timeContract, empty, sign]
have h1 : ofFieldOpList (𝓕 := 𝓕) [] = ofCrAnFieldOpList [] := by
rw [ofFieldOpList, ofCrAnFieldOpList]
simp
rw [h1, normalOrder_ofCrAnFieldOpList]
simp only [sign, List.length_nil, empty, Finset.univ_eq_empty, instCommGroup.eq_1,
Fin.getElem_fin, Finset.prod_empty, WickContraction.timeContract, List.get_eq_getElem,
OneMemClass.coe_one, normalOrderSign_nil, normalOrderList_nil, one_smul, one_mul]
rfl
lemma wicks_theorem_congr {φs φs' : List 𝓕.States} (h : φs = φs') :
∑ (φsΛ : WickContraction φs.length), (φsΛ.sign • φsΛ.timeContract 𝓞) *
𝓞.crAnF 𝓝ᶠ([φsΛ]ᵘᶜ)
= ∑ (φs'Λ : WickContraction φs'.length), (φs'Λ.sign • φs'Λ.timeContract 𝓞) *
𝓞.crAnF 𝓝ᶠ([φs'Λ]ᵘᶜ) := by
∑ (φsΛ : WickContraction φs.length), (φsΛ.sign • φsΛ.timeContract) *
𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
= ∑ (φs'Λ : WickContraction φs'.length), (φs'Λ.sign • φs'Λ.timeContract) *
𝓝(ofFieldOpList [φs'Λ]ᵘᶜ) := by
subst h
simp
@ -351,31 +356,31 @@ remark wicks_theorem_context := "
- The product of time-contractions of the contracted pairs of `c`.
- The normal-ordering of the uncontracted fields in `c`.
-/
theorem wicks_theorem : (φs : List 𝓕.States) → 𝓞.crAnF (𝓣ᶠ(ofStateList φs)) =
∑ (φsΛ : WickContraction φs.length), (φsΛ.sign • φsΛ.timeContract 𝓞) * 𝓞.crAnF 𝓝ᶠ([φsΛ]ᵘᶜ)
theorem wicks_theorem : (φs : List 𝓕.States) → 𝓣(ofFieldOpList φs) =
∑ (φsΛ : WickContraction φs.length), (φsΛ.sign • φsΛ.timeContract) * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
| [] => wicks_theorem_nil
| φ :: φs => by
have ih := wicks_theorem (eraseMaxTimeField φ φs)
rw [timeOrderF_eq_maxTimeField_mul_finset, map_mul, ih, Finset.mul_sum]
conv_lhs => rw [timeOrder_eq_maxTimeField_mul_finset, ih, Finset.mul_sum]
have h1 : φ :: φs =
(eraseMaxTimeField φ φs).insertIdx (maxTimeFieldPosFin φ φs) (maxTimeField φ φs) := by
simp only [eraseMaxTimeField, insertionSortDropMinPos, List.length_cons, Nat.succ_eq_add_one,
maxTimeField, insertionSortMin, List.get_eq_getElem]
erw [insertIdx_eraseIdx_fin]
rw [wicks_theorem_congr h1]
conv_rhs => rw [wicks_theorem_congr h1]
conv_rhs => rw [insertLift_sum]
congr
funext c
have ht := Subalgebra.mem_center_iff.mp (Subalgebra.smul_mem (Subalgebra.center 𝓞.A)
(WickContraction.timeContract 𝓞 c).2 (sign (eraseMaxTimeField φ φs) c))
rw [map_smul, Algebra.smul_mul_assoc, ← mul_assoc, ht, mul_assoc, ← map_mul]
rw [wick_term_cons_eq_sum_wick_term (𝓞 := 𝓞)
apply Finset.sum_congr rfl
intro c _
have ht := Subalgebra.mem_center_iff.mp (Subalgebra.smul_mem (Subalgebra.center _)
(WickContraction.timeContract c).2 (sign (eraseMaxTimeField φ φs) c))
rw [Algebra.smul_mul_assoc, ← mul_assoc, ht, mul_assoc]
rw [wick_term_cons_eq_sum_wick_term
(maxTimeField φ φs) (eraseMaxTimeField φ φs) (maxTimeFieldPosFin φ φs) c]
trans (1 : ) • ∑ k : Option { x // x ∈ c.uncontracted }, sign
(List.insertIdx (↑(maxTimeFieldPosFin φ φs)) (maxTimeField φ φs) (eraseMaxTimeField φ φs))
(c ↩Λ (maxTimeField φ φs) (maxTimeFieldPosFin φ φs) k) •
↑((c ↩Λ (maxTimeField φ φs) (maxTimeFieldPosFin φ φs) k).timeContract 𝓞) *
𝓞.crAnF 𝓝ᶠ(ofStateList (List.map (List.insertIdx (↑(maxTimeFieldPosFin φ φs))
↑((c ↩Λ (maxTimeField φ φs) (maxTimeFieldPosFin φ φs) k).timeContract ) *
𝓝(ofFieldOpList (List.map (List.insertIdx (↑(maxTimeFieldPosFin φ φs))
(maxTimeField φ φs) (eraseMaxTimeField φ φs)).get
(c ↩Λ (maxTimeField φ φs) (maxTimeFieldPosFin φ φs) k).uncontractedList))
swap