docs: More doc-strings

This commit is contained in:
jstoobysmith 2024-11-12 07:24:26 +00:00
parent 2fe0bb536c
commit fc2065b744

View file

@ -86,7 +86,7 @@ lemma higgsRepUnitary_mul (g : GaugeGroupI) (φ : HiggsVec) :
simp [higgsRepUnitary_apply_coe, smul_mulVec_assoc]
/-- The application of gauge group on a Higgs vector can be decomposed in
to an smul with the `U(1)-factor` and a multiplication by the `SU(2)`-factor. -/
to an smul with the `U(1)-factor` and a multiplication by the `SU(2)`-factor. -/
lemma rep_apply (g : GaugeGroupI) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
higgsRepUnitary_mul g φ
@ -97,10 +97,11 @@ lemma rep_apply (g : GaugeGroupI) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.
-/
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
vector to zero, and the second component to a real -/
svector to zero, and the second component to a real -/
def rotateMatrix (φ : HiggsVec) : Matrix (Fin 2) (Fin 2) :=
![![φ 1 /‖φ‖, - φ 0 /‖φ‖], ![conj (φ 0) / ‖φ‖, conj (φ 1) / ‖φ‖]]
/-- An expansion of the conjugate of the `rotateMatrix` for a higgs vector. -/
lemma rotateMatrix_star (φ : HiggsVec) :
star φ.rotateMatrix =
![![conj (φ 1) /‖φ‖, φ 0 /‖φ‖], ![- conj (φ 0) / ‖φ‖, φ 1 / ‖φ‖]] := by
@ -108,6 +109,7 @@ lemma rotateMatrix_star (φ : HiggsVec) :
ext i j
fin_cases i <;> fin_cases j <;> simp [conj_ofReal]
/-- The determinant of the `rotateMatrix` for a non-zero Higgs vector is `1`. -/
lemma rotateMatrix_det {φ : HiggsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by
have h1 : (‖φ‖ : ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
field_simp [rotateMatrix, det_fin_two]
@ -115,6 +117,7 @@ lemma rotateMatrix_det {φ : HiggsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
/-- The `rotateMatrix` for a non-zero Higgs vector is untitary. -/
lemma rotateMatrix_unitary {φ : HiggsVec} (hφ : φ ≠ 0) :
(rotateMatrix φ) ∈ unitaryGroup (Fin 2) := by
rw [mem_unitaryGroup_iff', rotateMatrix_star, rotateMatrix]
@ -130,6 +133,7 @@ lemma rotateMatrix_unitary {φ : HiggsVec} (hφ : φ ≠ 0) :
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
/-- The `rotateMatrix` for a non-zero Higgs vector is special unitary. -/
lemma rotateMatrix_specialUnitary {φ : HiggsVec} (hφ : φ ≠ 0) :
(rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) :=
mem_specialUnitaryGroup_iff.mpr ⟨rotateMatrix_unitary hφ, rotateMatrix_det hφ⟩
@ -139,6 +143,8 @@ vector to zero, and the second component to a real number. -/
def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroupI :=
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
/-- Acting on a non-zero Higgs vector with its rotation matrix gives a vector which is
zero in the first componenent and a positive real in the second component. -/
lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
rep (rotateGuageGroup hφ) φ = ![0, Complex.ofRealHom ‖φ‖] := by
rw [rep_apply]
@ -159,6 +165,9 @@ lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
/-- For every Higgs vector there exists an element of the gauge group which rotates that
Higgs vector to have `0` in the first component and be a non-negative real in the second
componenet. -/
theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
∃ (g : GaugeGroupI), rep g φ = ![0, Complex.ofReal ‖φ‖] := by
by_cases h : φ = 0
@ -170,6 +179,9 @@ theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
· use rotateGuageGroup h
exact rotateGuageGroup_apply h
/-- For every Higgs vector there exists an element of the gauge group which rotates that
Higgs vector to have `0` in the second component and be a non-negative real in the first
componenet. -/
theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
∃ (g : GaugeGroupI), rep g φ = ![Complex.ofReal ‖φ‖, 0] := by
obtain ⟨g, h⟩ := rotate_fst_zero_snd_real φ