refactor: Lint

This commit is contained in:
jstoobysmith 2025-02-03 05:39:48 +00:00
parent 006e29fd08
commit fca3f02eca
16 changed files with 416 additions and 352 deletions

View file

@ -440,15 +440,15 @@ lemma timeOrder_superCommute_eq_time_mid {φ ψ : 𝓕.CrAnStates}
rw [← map_mul, ← map_mul, timeOrder_eq_ι_timeOrderF]
rw [ι_timeOrderF_superCommuteF_eq_time]
rfl
simp_all
simp_all
· simp_all
· simp_all
lemma timeOrder_superCommute_eq_time_left {φ ψ : 𝓕.CrAnStates}
(hφψ : crAnTimeOrderRel φ ψ) (hψφ : crAnTimeOrderRel ψ φ) (b : 𝓕.FieldOpAlgebra) :
𝓣([ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * b) =
[ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * 𝓣(b) := by
trans 𝓣(1 * [ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * b)
simp
simp only [one_mul]
rw [timeOrder_superCommute_eq_time_mid hφψ hψφ]
simp
@ -458,16 +458,16 @@ lemma timeOrder_superCommute_neq_time {φ ψ : 𝓕.CrAnStates}
rw [ofCrAnFieldOp, ofCrAnFieldOp]
rw [superCommute_eq_ι_superCommuteF]
rw [timeOrder_eq_ι_timeOrderF]
trans ι (timeOrderF (1 * (superCommuteF (ofCrAnState φ)) (ofCrAnState ψ) * 1))
simp
rw [ι_timeOrderF_superCommuteF_neq_time ]
trans ι (timeOrderF (1 * (superCommuteF (ofCrAnState φ)) (ofCrAnState ψ) * 1))
simp only [one_mul, mul_one]
rw [ι_timeOrderF_superCommuteF_neq_time]
exact hφψ
lemma timeOrder_superCommute_anPart_ofFieldOp_neq_time {φ ψ : 𝓕.States}
(hφψ : ¬ (timeOrderRel φ ψ ∧ timeOrderRel ψ φ)) :
𝓣([anPart φ,ofFieldOp ψ]ₛ) = 0 := by
rw [ofFieldOp_eq_sum]
simp
simp only [map_sum]
apply Finset.sum_eq_zero
intro a ha
match φ with
@ -483,24 +483,24 @@ lemma timeOrder_superCommute_anPart_ofFieldOp_neq_time {φ ψ : 𝓕.States}
simp_all [crAnTimeOrderRel]
lemma timeOrder_timeOrder_mid (a b c : 𝓕.FieldOpAlgebra) :
𝓣(a * b * c) = 𝓣(a * 𝓣(b) * c):= by
𝓣(a * b * c) = 𝓣(a * 𝓣(b) * c) := by
obtain ⟨a, rfl⟩ := ι_surjective a
obtain ⟨b, rfl⟩ := ι_surjective b
obtain ⟨c, rfl⟩ := ι_surjective c
rw [← map_mul, ← map_mul, timeOrder_eq_ι_timeOrderF, timeOrder_eq_ι_timeOrderF,
← map_mul, ← map_mul, timeOrder_eq_ι_timeOrderF, timeOrderF_timeOrderF_mid]
← map_mul, ← map_mul, timeOrder_eq_ι_timeOrderF, timeOrderF_timeOrderF_mid]
lemma timeOrder_timeOrder_left (b c : 𝓕.FieldOpAlgebra) :
𝓣(b * c) = 𝓣(𝓣(b) * c):= by
𝓣(b * c) = 𝓣(𝓣(b) * c) := by
trans 𝓣(1 * b * c)
simp
simp only [one_mul]
rw [timeOrder_timeOrder_mid]
simp
lemma timeOrder_timeOrder_right (a b : 𝓕.FieldOpAlgebra) :
𝓣(a * b) = 𝓣(a * 𝓣(b)) := by
trans 𝓣(a * b * 1)
simp
simp only [mul_one]
rw [timeOrder_timeOrder_mid]
simp