refactor: Lint

This commit is contained in:
jstoobysmith 2025-02-03 05:39:48 +00:00
parent 006e29fd08
commit fca3f02eca
16 changed files with 416 additions and 352 deletions

View file

@ -37,21 +37,20 @@ def quotContraction (S : Finset (Finset (Fin φs.length))) (ha : S ⊆ φsΛ.1)
⟨Finset.filter (fun a => Finset.map uncontractedListEmd a ∈ φsΛ.1) Finset.univ,
by
intro a ha'
simp at ha'
simpa using φsΛ.2.1 (Finset.map uncontractedListEmd a) ha'
, by
simp only [Finset.mem_filter, Finset.mem_univ, true_and] at ha'
simpa using φsΛ.2.1 (Finset.map uncontractedListEmd a) ha' , by
intro a ha b hb
simp at ha hb
simp only [Finset.mem_filter, Finset.mem_univ, true_and] at ha hb
by_cases hab : a = b
· simp [hab]
· simp [hab]
· simp only [hab, false_or]
have hx := φsΛ.2.2 (Finset.map uncontractedListEmd a) ha (Finset.map uncontractedListEmd b) hb
simp_all⟩
lemma mem_of_mem_quotContraction {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}
{a : Finset (Fin [φsΛ.subContraction S hs]ᵘᶜ.length)}
(ha : a ∈ (quotContraction S hs).1) : Finset.map uncontractedListEmd a ∈ φsΛ.1 := by
simp [quotContraction] at ha
simp only [quotContraction, Finset.mem_filter, Finset.mem_univ, true_and] at ha
exact ha
lemma mem_subContraction_or_quotContraction {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}
@ -60,8 +59,8 @@ lemma mem_subContraction_or_quotContraction {S : Finset (Finset (Fin φs.length)
∃ a', Finset.map uncontractedListEmd a' = a ∧ a' ∈ (quotContraction S hs).1 := by
by_cases h1 : a ∈ (φsΛ.subContraction S hs).1
· simp [h1]
simp [h1]
simp [subContraction] at h1
simp only [h1, false_or]
simp only [subContraction] at h1
have h2 := φsΛ.2.1 a ha
rw [@Finset.card_eq_two] at h2
obtain ⟨i, j, hij, rfl⟩ := h2
@ -70,25 +69,26 @@ lemma mem_subContraction_or_quotContraction {S : Finset (Finset (Fin φs.length)
intro p hp
have hp' : p ∈ φsΛ.1 := hs hp
have hp2 := φsΛ.2.2 p hp' {i, j} ha
simp [subContraction] at hp
simp only [subContraction] at hp
rcases hp2 with hp2 | hp2
· simp_all
simp at hp2
simp only [Finset.disjoint_insert_right, Finset.disjoint_singleton_right] at hp2
exact hp2.1
have hj : j ∈ (φsΛ.subContraction S hs).uncontracted := by
rw [mem_uncontracted_iff_not_contracted]
intro p hp
have hp' : p ∈ φsΛ.1 := hs hp
have hp2 := φsΛ.2.2 p hp' {i, j} ha
simp [subContraction] at hp
simp only [subContraction] at hp
rcases hp2 with hp2 | hp2
· simp_all
simp at hp2
simp only [Finset.disjoint_insert_right, Finset.disjoint_singleton_right] at hp2
exact hp2.2
obtain ⟨i, rfl⟩ := uncontractedListEmd_surjective_mem_uncontracted i hi
obtain ⟨j, rfl⟩ := uncontractedListEmd_surjective_mem_uncontracted j hj
use {i, j}
simp [quotContraction]
simp only [Finset.map_insert, Finset.map_singleton, quotContraction, Finset.mem_filter,
Finset.mem_univ, true_and]
exact ha
@[simp]
@ -105,12 +105,12 @@ lemma subContraction_fstFieldOfContract {S : Finset (Finset (Fin φs.length))} {
φsΛ.fstFieldOfContract ⟨a.1, mem_of_mem_subContraction a.2⟩:= by
apply eq_fstFieldOfContract_of_mem _ _ _ (φsΛ.sndFieldOfContract ⟨a.1, mem_of_mem_subContraction a.2⟩)
· have ha := finset_eq_fstFieldOfContract_sndFieldOfContract _ ⟨a.1, mem_of_mem_subContraction a.2⟩
simp at ha
simp only at ha
conv_lhs =>
rw [ha]
simp
· have ha := finset_eq_fstFieldOfContract_sndFieldOfContract _ ⟨a.1, mem_of_mem_subContraction a.2⟩
simp at ha
simp only at ha
conv_lhs =>
rw [ha]
simp
@ -123,12 +123,12 @@ lemma subContraction_sndFieldOfContract {S : Finset (Finset (Fin φs.length))} {
φsΛ.sndFieldOfContract ⟨a.1, mem_of_mem_subContraction a.2⟩:= by
apply eq_sndFieldOfContract_of_mem _ _ (φsΛ.fstFieldOfContract ⟨a.1, mem_of_mem_subContraction a.2⟩)
· have ha := finset_eq_fstFieldOfContract_sndFieldOfContract _ ⟨a.1, mem_of_mem_subContraction a.2⟩
simp at ha
simp only at ha
conv_lhs =>
rw [ha]
simp
· have ha := finset_eq_fstFieldOfContract_sndFieldOfContract _ ⟨a.1, mem_of_mem_subContraction a.2⟩
simp at ha
simp only at ha
conv_lhs =>
rw [ha]
simp
@ -162,12 +162,13 @@ lemma quotContraction_sndFieldOfContract_uncontractedListEmd {S : Finset (Finset
lemma quotContraction_gradingCompliant {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}
(hsΛ : φsΛ.GradingCompliant) :
GradingCompliant [φsΛ.subContraction S hs]ᵘᶜ (quotContraction S hs) := by
simp [GradingCompliant]
simp only [GradingCompliant, Fin.getElem_fin, Subtype.forall]
intro a ha
have h1' := mem_of_mem_quotContraction ha
erw [subContraction_uncontractedList_get]
erw [subContraction_uncontractedList_get]
simp
simp only [quotContraction_fstFieldOfContract_uncontractedListEmd, Fin.getElem_fin,
quotContraction_sndFieldOfContract_uncontractedListEmd]
apply hsΛ
lemma mem_quotContraction_iff {S : Finset (Finset (Fin φs.length))} {hs : S ⊆ φsΛ.1}