chore: bump to v4.16.0

This commit is contained in:
jstoobysmith 2025-02-12 14:24:26 +00:00
parent f44828f4a7
commit fe082d93c2
35 changed files with 200 additions and 145 deletions

View file

@ -52,7 +52,7 @@ lemma leftBasis_ρ_apply (M : SL(2,)) (i j : Fin 2) :
rw [LinearMap.toMatrix_apply]
simp only [leftBasis, Basis.coe_ofEquivFun, Basis.ofEquivFun_repr_apply]
change (M.1 *ᵥ (Pi.single j 1)) i = _
simp only [mulVec_single, mul_one]
simp only [mulVec_single, MulOpposite.op_one, Pi.smul_apply, transpose_apply, one_smul]
@[simp]
lemma leftBasis_toFin2 (i : Fin 2) : (leftBasis i).toFin2 = Pi.single i 1 := by
@ -97,7 +97,7 @@ lemma altLeftBasis_ρ_apply (M : SL(2,)) (i j : Fin 2) :
rw [LinearMap.toMatrix_apply]
simp only [altLeftBasis, Basis.coe_ofEquivFun, Basis.ofEquivFun_repr_apply, transpose_apply]
change ((M.1⁻¹)ᵀ *ᵥ (Pi.single j 1)) i = _
simp only [mulVec_single, transpose_apply, mul_one]
simp only [mulVec_single, MulOpposite.op_one, transpose_transpose, Pi.smul_apply, one_smul]
/-- The vector space ^2 carrying the conjugate representation of SL(2,C).
In index notation corresponds to a Weyl fermion with indices ψ^{dot a}. -/
@ -134,7 +134,7 @@ lemma rightBasis_ρ_apply (M : SL(2,)) (i j : Fin 2) :
rw [LinearMap.toMatrix_apply]
simp only [rightBasis, Basis.coe_ofEquivFun, Basis.ofEquivFun_repr_apply, transpose_apply]
change (M.1.map star *ᵥ (Pi.single j 1)) i = _
simp only [mulVec_single, transpose_apply, mul_one]
simp [mulVec_single, transpose_apply, mul_one]
/-- The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)^†.
@ -176,7 +176,7 @@ lemma altRightBasis_ρ_apply (M : SL(2,)) (i j : Fin 2) :
rw [LinearMap.toMatrix_apply]
simp only [altRightBasis, Basis.coe_ofEquivFun, Basis.ofEquivFun_repr_apply, transpose_apply]
change ((M.1⁻¹).conjTranspose *ᵥ (Pi.single j 1)) i = _
simp only [mulVec_single, transpose_apply, mul_one]
simp [mulVec_single, transpose_apply, mul_one]
/-!

View file

@ -108,7 +108,7 @@ def leftMetric : 𝟙_ (Rep SL(2,)) ⟶ leftHanded ⊗ leftHanded where
not_false_eq_true, mul_nonsing_inv, transpose_one, mul_one]
lemma leftMetric_apply_one : leftMetric.hom (1 : ) = leftMetricVal := by
change leftMetric.hom.hom.toFun (1 : ) = leftMetricVal
change (1 : ) • leftMetricVal = leftMetricVal
simp only [leftMetric, one_smul]
/-- The metric `εₐₐ` as an element of `(altLeftHanded ⊗ altLeftHanded).V`. -/
@ -155,7 +155,7 @@ def altLeftMetric : 𝟙_ (Rep SL(2,)) ⟶ altLeftHanded ⊗ altLeftHande
not_false_eq_true, mul_nonsing_inv, mul_one]
lemma altLeftMetric_apply_one : altLeftMetric.hom (1 : ) = altLeftMetricVal := by
change altLeftMetric.hom.hom.toFun (1 : ) = altLeftMetricVal
change (1 : ) • altLeftMetricVal = altLeftMetricVal
simp only [altLeftMetric, one_smul]
/-- The metric `ε^{dot a}^{dot a}` as an element of `(rightHanded ⊗ rightHanded).V`. -/
@ -209,7 +209,7 @@ def rightMetric : 𝟙_ (Rep SL(2,)) ⟶ rightHanded ⊗ rightHanded wher
rfl
lemma rightMetric_apply_one : rightMetric.hom (1 : ) = rightMetricVal := by
change rightMetric.hom.hom.toFun (1 : ) = rightMetricVal
change (1 : ) • rightMetricVal = rightMetricVal
simp only [rightMetric, one_smul]
/-- The metric `ε_{dot a}_{dot a}` as an element of `(altRightHanded ⊗ altRightHanded).V`. -/
@ -267,7 +267,7 @@ def altRightMetric : 𝟙_ (Rep SL(2,)) ⟶ altRightHanded ⊗ altRightHa
rfl
lemma altRightMetric_apply_one : altRightMetric.hom (1 : ) = altRightMetricVal := by
change altRightMetric.hom.hom.toFun (1 : ) = altRightMetricVal
change (1 : ) • altRightMetricVal = altRightMetricVal
simp only [altRightMetric, one_smul]
/-!

View file

@ -61,7 +61,7 @@ def leftAltLeftUnit : 𝟙_ (Rep SL(2,)) ⟶ leftHanded ⊗ altLeftHanded
simp
lemma leftAltLeftUnit_apply_one : leftAltLeftUnit.hom (1 : ) = leftAltLeftUnitVal := by
change leftAltLeftUnit.hom.hom.toFun (1 : ) = leftAltLeftUnitVal
change (1 : ) • leftAltLeftUnitVal = leftAltLeftUnitVal
simp only [leftAltLeftUnit, one_smul]
/-- The alt-left-left unit `δₐᵃ` as an element of `(altLeftHanded ⊗ leftHanded).V`. -/
@ -106,7 +106,7 @@ def altLeftLeftUnit : 𝟙_ (Rep SL(2,)) ⟶ altLeftHanded ⊗ leftHanded
/-- Applying the morphism `altLeftLeftUnit` to `1` returns `altLeftLeftUnitVal`. -/
lemma altLeftLeftUnit_apply_one : altLeftLeftUnit.hom (1 : ) = altLeftLeftUnitVal := by
change altLeftLeftUnit.hom.hom.toFun (1 : ) = altLeftLeftUnitVal
change (1 : ) • altLeftLeftUnitVal = altLeftLeftUnitVal
simp only [altLeftLeftUnit, one_smul]
/-- The right-alt-right unit `δ^{dot a}_{dot a}` as an element of
@ -157,7 +157,7 @@ def rightAltRightUnit : 𝟙_ (Rep SL(2,)) ⟶ rightHanded ⊗ altRightHa
simp
lemma rightAltRightUnit_apply_one : rightAltRightUnit.hom (1 : ) = rightAltRightUnitVal := by
change rightAltRightUnit.hom.hom.toFun (1 : ) = rightAltRightUnitVal
change (1 : ) • rightAltRightUnitVal = rightAltRightUnitVal
simp only [rightAltRightUnit, one_smul]
/-- The alt-right-right unit `δ_{dot a}^{dot a}` as an element of
@ -206,7 +206,7 @@ def altRightRightUnit : 𝟙_ (Rep SL(2,)) ⟶ altRightHanded ⊗ rightHa
simp
lemma altRightRightUnit_apply_one : altRightRightUnit.hom (1 : ) = altRightRightUnitVal := by
change altRightRightUnit.hom.hom.toFun (1 : ) = altRightRightUnitVal
change (1 : ) • altRightRightUnitVal = altRightRightUnitVal
simp only [altRightRightUnit, one_smul]
/-!
@ -236,7 +236,7 @@ lemma contr_altLeftLeftUnit (x : leftHanded) :
erw [h1, h1, h1, h1]
repeat rw [leftAltContraction_basis]
simp only [Fin.isValue, leftUnitor, ModuleCat.MonoidalCategory.leftUnitor, ModuleCat.of_coe,
CategoryTheory.Iso.trans_hom, LinearEquiv.toModuleIso_hom_hom, ModuleCat.ofSelfIso_hom,
CategoryTheory.Iso.trans_hom, ModuleCat.ofSelfIso_hom,
CategoryTheory.Category.comp_id, Action.instMonoidalCategory_tensorUnit_V, Fin.val_zero,
↓reduceIte, Fin.val_one, one_ne_zero, zero_tmul, map_zero, smul_zero, add_zero, zero_ne_one,
zero_add]