feat: Add Momentum

This commit is contained in:
jstoobysmith 2024-06-18 15:34:57 -04:00
parent 4632b66854
commit fe50df3fc9
2 changed files with 104 additions and 0 deletions

View file

@ -16,6 +16,7 @@ import Mathlib.Data.Fintype.Perm
import Mathlib.Combinatorics.SimpleGraph.Basic
import Mathlib.Combinatorics.SimpleGraph.Connectivity
import Mathlib.SetTheory.Cardinal.Basic
import LeanCopilot
/-!
# Feynman diagrams
@ -204,6 +205,36 @@ instance preimageEdgeMapFintype [IsFinitePreFeynmanRule P] {𝓔 𝓥 : Type}
/-!
## External and internal Vertices
We say a vertex Label is `external` if it has only one half-edge associated with it.
Otherwise, we say it is `internal`.
We will show that for `IsFinitePreFeynmanRule` the condition of been external is decidable.
-/
/-- A vertex is external if it has a single half-edge associated to it. -/
def External {P : PreFeynmanRule} (v : P.VertexLabel) : Prop :=
IsIsomorphic (P.vertexLabelMap v).left (Fin 1)
lemma external_iff_exists_bijection {P : PreFeynmanRule} (v : P.VertexLabel) :
External v ↔ ∃ (κ : (P.vertexLabelMap v).left → Fin 1), Function.Bijective κ := by
refine Iff.intro (fun h => ?_) (fun h => ?_)
obtain ⟨κ, κm1, h1, h2⟩ := h
let f : (P.vertexLabelMap v).left ≅ (Fin 1) := ⟨κ, κm1, h1, h2⟩
exact ⟨f.hom, (isIso_iff_bijective f.hom).mp $ Iso.isIso_hom f⟩
obtain ⟨κ, h1⟩ := h
let f : (P.vertexLabelMap v).left ⟶ (Fin 1) := κ
have ft : IsIso f := (isIso_iff_bijective κ).mpr h1
obtain ⟨fm, hf1, hf2⟩ := ft
exact ⟨f, fm, hf1, hf2⟩
instance externalDecidable [IsFinitePreFeynmanRule P] (v : P.VertexLabel) :
Decidable (External v) :=
decidable_of_decidable_of_iff (external_iff_exists_bijection v).symm
/-!
## Conditions to form a diagram.
-/

View file

@ -0,0 +1,73 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.FeynmanDiagrams.Basic
import Mathlib.Analysis.InnerProductSpace.Adjoint
import Mathlib.Algebra.Category.ModuleCat.Basic
/-!
# Momentum in Feynman diagrams
The aim of this file is to associate with each half-edge of a Feynman diagram a momentum,
and constrain the momentums based conservation at each vertex and edge.
-/
namespace FeynmanDiagram
open CategoryTheory
open PreFeynmanRule
variable {P : PreFeynmanRule} (F : FeynmanDiagram P)
variable (d : )
/-- The momentum space for a `d`-dimensional field theory for a single particle.
TODO: Move this definition, and define it as a four-vector. -/
def SingleMomentumSpace : Type := Fin d →
instance : AddCommGroup (SingleMomentumSpace d) := Pi.addCommGroup
noncomputable instance : Module (SingleMomentumSpace d) := Pi.module _ _ _
/-- The type which asociates to each half-edge a `d`-dimensional vector.
This is to be interpreted as the momentum associated to that half-edge flowing from the
corresponding `edge` to the corresponding `vertex`. So all momentums flow into vertices. -/
def FullMomentumSpace : Type := F.𝓱𝓔 → Fin d →
instance : AddCommGroup (F.FullMomentumSpace d) := Pi.addCommGroup
noncomputable instance : Module (F.FullMomentumSpace d) := Pi.module _ _ _
/-- The linear map taking a half-edge to its momentum.
(defined as flowing from the `edge` to the vertex.) -/
def toHalfEdgeMomentum (i : F.𝓱𝓔) : F.FullMomentumSpace d →ₗ[] SingleMomentumSpace d where
toFun x := x i
map_add' x y := by rfl
map_smul' c x := by rfl
namespace Hom
variable {F G : FeynmanDiagram P}
variable (f : F ⟶ G)
/-- The linear map induced by a morphism of Feynman diagrams. -/
def toLinearMap : G.FullMomentumSpace d →ₗ[] F.FullMomentumSpace d where
toFun x := x ∘ f.𝓱𝓔
map_add' x y := by rfl
map_smul' c x := by rfl
end Hom
/-- The contravariant functor from Feynman diagrams to Modules over ``. -/
noncomputable def funcFullMomentumSpace : FeynmanDiagram P ⥤ (ModuleCat )ᵒᵖ where
obj F := Opposite.op $ ModuleCat.of (F.FullMomentumSpace d)
map f := Opposite.op $ Hom.toLinearMap d f
/-!
## Edge constraints
-/
end FeynmanDiagram