feat: add explicit equation for phase
This commit is contained in:
parent
5a5540ba78
commit
fe63fc9994
3 changed files with 376 additions and 5 deletions
|
@ -384,8 +384,6 @@ lemma fst_row_thd_row (V : CKMMatrix) : V.1 2 0 * conj (V.1 0 0) + V.1 2 1 * c
|
|||
exact ht
|
||||
|
||||
|
||||
|
||||
|
||||
end CKMMatrix
|
||||
|
||||
end
|
||||
|
|
176
HepLean/FlavorPhysics/CKMMatrix/Jarlskog.lean
Normal file
176
HepLean/FlavorPhysics/CKMMatrix/Jarlskog.lean
Normal file
|
@ -0,0 +1,176 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.FlavorPhysics.CKMMatrix.Basic
|
||||
import HepLean.FlavorPhysics.CKMMatrix.Rows
|
||||
import HepLean.FlavorPhysics.CKMMatrix.PhaseFreedom
|
||||
import HepLean.FlavorPhysics.CKMMatrix.Ratios
|
||||
import HepLean.FlavorPhysics.CKMMatrix.StandardParameters
|
||||
import Mathlib.Analysis.SpecialFunctions.Complex.Arg
|
||||
|
||||
open Matrix Complex
|
||||
open ComplexConjugate
|
||||
open CKMMatrix
|
||||
|
||||
|
||||
noncomputable section
|
||||
|
||||
@[simps!]
|
||||
def jarlskogComplexCKM (V : CKMMatrix) : ℂ :=
|
||||
[V]us * [V]cb * conj [V]ub * conj [V]cs
|
||||
|
||||
lemma jarlskogComplexCKM_equiv (V U : CKMMatrix) (h : V ≈ U) :
|
||||
jarlskogComplexCKM V = jarlskogComplexCKM U := by
|
||||
obtain ⟨a, b, c, e, f, g, h⟩ := h
|
||||
change V = phaseShiftApply U a b c e f g at h
|
||||
rw [h]
|
||||
simp only [jarlskogComplexCKM, Fin.isValue, phaseShiftApply.ub,
|
||||
phaseShiftApply.us, phaseShiftApply.cb, phaseShiftApply.cs]
|
||||
simp [← exp_conj, conj_ofReal, exp_add, exp_neg]
|
||||
have ha : cexp (↑a * I) ≠ 0 := exp_ne_zero _
|
||||
have hb : cexp (↑b * I) ≠ 0 := exp_ne_zero _
|
||||
have hf : cexp (↑f * I) ≠ 0 := exp_ne_zero _
|
||||
have hg : cexp (↑g * I) ≠ 0 := exp_ne_zero _
|
||||
field_simp
|
||||
ring
|
||||
|
||||
def inv₁ (V : Quotient CKMMatrixSetoid) : ℝ :=
|
||||
VusAbs V ^ 2 * VubAbs V ^ 2 * VcbAbs V ^2 /(VudAbs V ^ 2 + VusAbs V ^2)
|
||||
|
||||
lemma inv₁_sP (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) (h1 : 0 ≤ Real.sin θ₁₂)
|
||||
(h2 : 0 ≤ Real.cos θ₁₃) (h3 : 0 ≤ Real.sin θ₂₃) (h4 : 0 ≤ Real.cos θ₁₂) :
|
||||
inv₁ ⟦sP θ₁₂ θ₁₃ θ₂₃ δ₁₃⟧ =
|
||||
Real.sin θ₁₂ ^ 2 * Real.cos θ₁₃ ^ 2 * Real.sin θ₁₃ ^ 2 * Real.sin θ₂₃ ^ 2 := by
|
||||
simp only [inv₁, VusAbs, VAbs, VAbs', Fin.isValue, sP, standardParameterizationAsMatrix,
|
||||
neg_mul, Quotient.lift_mk, cons_val', cons_val_one, head_cons,
|
||||
empty_val', cons_val_fin_one, cons_val_zero, _root_.map_mul, VubAbs, cons_val_two, tail_cons,
|
||||
VcbAbs, VudAbs, Complex.abs_ofReal]
|
||||
by_cases hx : Real.cos θ₁₃ ≠ 0
|
||||
·
|
||||
rw [Complex.abs_exp]
|
||||
simp
|
||||
rw [_root_.abs_of_nonneg h1, _root_.abs_of_nonneg h3, _root_.abs_of_nonneg h2,
|
||||
_root_.abs_of_nonneg h4]
|
||||
simp [sq]
|
||||
ring_nf
|
||||
nth_rewrite 2 [Real.sin_sq θ₁₂]
|
||||
ring_nf
|
||||
field_simp
|
||||
ring
|
||||
· simp at hx
|
||||
rw [hx]
|
||||
simp
|
||||
|
||||
|
||||
|
||||
@[simp]
|
||||
def jarlskogComplex : Quotient CKMMatrixSetoid → ℂ :=
|
||||
Quotient.lift jarlskogComplexCKM jarlskogComplexCKM_equiv
|
||||
|
||||
-- bad name
|
||||
def expδ₁₃ (V : Quotient CKMMatrixSetoid) : ℂ :=
|
||||
jarlskogComplex V + inv₁ V
|
||||
|
||||
lemma expδ₁₃_sP (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) (h1 : 0 ≤ Real.sin θ₁₂)
|
||||
(h2 : 0 ≤ Real.cos θ₁₃) (h3 : 0 ≤ Real.sin θ₂₃) (h4 : 0 ≤ Real.cos θ₁₂) :
|
||||
expδ₁₃ ⟦sP θ₁₂ θ₁₃ θ₂₃ δ₁₃⟧ =
|
||||
sin θ₁₂ * cos θ₁₃ ^ 2 * sin θ₂₃ * sin θ₁₃ * cos θ₁₂ * cos θ₂₃ * cexp (I * δ₁₃) := by
|
||||
rw [expδ₁₃]
|
||||
rw [inv₁_sP _ _ _ _ h1 h2 h3 h4 ]
|
||||
simp only [expδ₁₃, jarlskogComplex, sP, standardParameterizationAsMatrix, neg_mul,
|
||||
Quotient.lift_mk, jarlskogComplexCKM, Fin.isValue, cons_val', cons_val_one, head_cons,
|
||||
empty_val', cons_val_fin_one, cons_val_zero, cons_val_two, tail_cons, _root_.map_mul, ←
|
||||
exp_conj, map_neg, conj_I, conj_ofReal, neg_neg, map_sub]
|
||||
simp
|
||||
ring_nf
|
||||
rw [exp_neg]
|
||||
have h1 : cexp (I * δ₁₃) ≠ 0 := exp_ne_zero _
|
||||
field_simp
|
||||
|
||||
|
||||
lemma expδ₁₃_sP_V (V : CKMMatrix) (δ₁₃ : ℝ) :
|
||||
expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
|
||||
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
|
||||
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) * cexp (I * δ₁₃) := by
|
||||
refine expδ₁₃_sP _ _ _ _ ?_ ?_ ?_ ?_
|
||||
rw [S₁₂_eq_sin_θ₁₂]
|
||||
exact S₁₂_nonneg _
|
||||
exact Real.cos_arcsin_nonneg _
|
||||
rw [S₂₃_eq_sin_θ₂₃]
|
||||
exact S₂₃_nonneg _
|
||||
exact Real.cos_arcsin_nonneg _
|
||||
|
||||
|
||||
lemma expδ₁₃_eq_zero (V : CKMMatrix) (δ₁₃ : ℝ) :
|
||||
expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = 0 ↔
|
||||
VudAbs ⟦V⟧ = 0 ∨ VubAbs ⟦V⟧ = 0 ∨ VusAbs ⟦V⟧ = 0 ∨ VcbAbs ⟦V⟧ = 0 ∨ VtbAbs ⟦V⟧ = 0 := by
|
||||
rw [VudAbs_eq_C₁₂_mul_C₁₃, VubAbs_eq_S₁₃, VusAbs_eq_S₁₂_mul_C₁₃, VcbAbs_eq_S₂₃_mul_C₁₃, VtbAbs_eq_C₂₃_mul_C₁₃,
|
||||
← ofReal_inj,
|
||||
← ofReal_inj, ← ofReal_inj, ← ofReal_inj, ← ofReal_inj]
|
||||
simp only [ofReal_mul]
|
||||
rw [← S₁₃_eq_ℂsin_θ₁₃, ← S₁₂_eq_ℂsin_θ₁₂, ← S₂₃_eq_ℂsin_θ₂₃,
|
||||
← C₁₃_eq_ℂcos_θ₁₃, ← C₂₃_eq_ℂcos_θ₂₃,← C₁₂_eq_ℂcos_θ₁₂]
|
||||
simp
|
||||
rw [expδ₁₃_sP_V]
|
||||
simp
|
||||
have h1 := exp_ne_zero (I * δ₁₃)
|
||||
simp_all
|
||||
aesop
|
||||
|
||||
lemma inv₂_V_arg (V : CKMMatrix) (δ₁₃ : ℝ)
|
||||
(h1 : expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ≠ 0 ) :
|
||||
cexp (arg (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * I) =
|
||||
cexp (δ₁₃ * I) := by
|
||||
have h1a := expδ₁₃_sP_V V δ₁₃
|
||||
have habs : Complex.abs (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) =
|
||||
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
|
||||
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) := by
|
||||
rw [h1a]
|
||||
simp [abs_exp]
|
||||
rw [complexAbs_sin_θ₁₃, complexAbs_cos_θ₁₃, complexAbs_sin_θ₁₂, complexAbs_cos_θ₁₂,
|
||||
complexAbs_sin_θ₂₃, complexAbs_cos_θ₂₃]
|
||||
have h2 : expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
|
||||
Complex.abs (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * exp (δ₁₃ * I) := by
|
||||
rw [habs, h1a]
|
||||
ring_nf
|
||||
nth_rewrite 1 [← abs_mul_exp_arg_mul_I (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ )] at h2
|
||||
have habs_neq_zero : (Complex.abs (expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) : ℂ) ≠ 0 := by
|
||||
simp
|
||||
exact h1
|
||||
rw [← mul_right_inj' habs_neq_zero]
|
||||
rw [← h2]
|
||||
|
||||
def δ₁₃ (V : Quotient CKMMatrixSetoid) : ℝ := arg (expδ₁₃ V)
|
||||
|
||||
theorem eq_standardParameterization_δ₃ (V : CKMMatrix) :
|
||||
V ≈ sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) (δ₁₃ ⟦V⟧) := by
|
||||
obtain ⟨δ₁₃', hδ₃⟩ := exists_standardParameterization V
|
||||
have hSV := (Quotient.eq.mpr (hδ₃))
|
||||
by_cases h : expδ₁₃ ⟦sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'⟧ ≠ 0
|
||||
have h1 := inv₂_V_arg V δ₁₃' h
|
||||
have h2 := eq_phases_sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'
|
||||
(δ₁₃ ⟦V⟧) (by rw [← h1, ← hSV, δ₁₃])
|
||||
rw [h2] at hδ₃
|
||||
exact hδ₃
|
||||
simp at h
|
||||
have h1 : δ₁₃ ⟦V⟧ = 0 := by
|
||||
rw [hSV, δ₁₃, h]
|
||||
simp
|
||||
rw [h1]
|
||||
rw [expδ₁₃_eq_zero, Vs_zero_iff_cos_sin_zero] at h
|
||||
cases' h with h h
|
||||
exact phaseShiftEquivRelation.trans hδ₃ (sP_cos_θ₁₂_eq_zero δ₁₃' h )
|
||||
cases' h with h h
|
||||
exact phaseShiftEquivRelation.trans hδ₃ (sP_cos_θ₁₃_eq_zero δ₁₃' h )
|
||||
cases' h with h h
|
||||
exact phaseShiftEquivRelation.trans hδ₃ (sP_cos_θ₂₃_eq_zero δ₁₃' h )
|
||||
cases' h with h h
|
||||
exact phaseShiftEquivRelation.trans hδ₃ (sP_sin_θ₁₂_eq_zero δ₁₃' h )
|
||||
cases' h with h h
|
||||
exact phaseShiftEquivRelation.trans hδ₃ (sP_sin_θ₁₃_eq_zero δ₁₃' h )
|
||||
exact phaseShiftEquivRelation.trans hδ₃ (sP_sin_θ₂₃_eq_zero δ₁₃' h )
|
||||
|
||||
|
||||
end
|
|
@ -31,18 +31,49 @@ lemma S₁₃_eq_sin_θ₁₃ (V : Quotient CKMMatrixSetoid) : Real.sin (θ₁
|
|||
rw [← VubAbs_eq_S₁₃]
|
||||
exact (VAbs_leq_one 0 2 V)
|
||||
|
||||
lemma S₁₃_of_Vub_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V = 1) : S₁₃ V = 1 := by
|
||||
rw [← VubAbs_eq_S₁₃, ha]
|
||||
|
||||
lemma S₁₃_eq_ℂsin_θ₁₃ (V : Quotient CKMMatrixSetoid) : Complex.sin (θ₁₃ V) = S₁₃ V := by
|
||||
rw [← S₁₃_eq_sin_θ₁₃]
|
||||
simp
|
||||
|
||||
lemma complexAbs_sin_θ₁₃ (V : Quotient CKMMatrixSetoid) : Complex.abs (Complex.sin (θ₁₃ V)) =
|
||||
sin (θ₁₃ V):= by
|
||||
rw [S₁₃_eq_ℂsin_θ₁₃, ← VubAbs_eq_S₁₃]
|
||||
rw [Complex.abs_ofReal]
|
||||
simp
|
||||
exact VAbs_ge_zero 0 2 V
|
||||
|
||||
|
||||
lemma S₁₃_of_Vub_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V = 1) : S₁₃ V = 1 := by
|
||||
rw [← VubAbs_eq_S₁₃, ha]
|
||||
|
||||
|
||||
def C₁₃ (V : Quotient CKMMatrixSetoid) : ℝ := Real.cos (θ₁₃ V)
|
||||
|
||||
lemma C₁₃_eq_ℂcos_θ₁₃ (V : Quotient CKMMatrixSetoid) : Complex.cos (θ₁₃ V) = C₁₃ V := by
|
||||
simp [C₁₃]
|
||||
|
||||
lemma complexAbs_cos_θ₁₃ (V : Quotient CKMMatrixSetoid) : Complex.abs (Complex.cos (θ₁₃ V)) =
|
||||
cos (θ₁₃ V):= by
|
||||
rw [C₁₃_eq_ℂcos_θ₁₃, Complex.abs_ofReal]
|
||||
simp
|
||||
exact Real.cos_arcsin_nonneg _
|
||||
|
||||
lemma cos_θ₁₃_zero {V : Quotient CKMMatrixSetoid} (h1 : Real.cos (θ₁₃ V) = 0) :
|
||||
VubAbs V = 1 := by
|
||||
rw [θ₁₃, Real.cos_arcsin, ← VubAbs_eq_S₁₃, Real.sqrt_eq_zero] at h1
|
||||
have h2 : VubAbs V ^ 2 = 1 := by linear_combination -(1 * h1)
|
||||
simp at h2
|
||||
cases' h2 with h2 h2
|
||||
exact h2
|
||||
have h3 := VAbs_ge_zero 0 2 V
|
||||
rw [h2] at h3
|
||||
simp at h3
|
||||
linarith
|
||||
simp
|
||||
rw [_root_.abs_of_nonneg (VAbs_ge_zero 0 2 V)]
|
||||
exact VAbs_leq_one 0 2 V
|
||||
|
||||
|
||||
lemma S₁₃_sq_add_C₁₃_sq (V : Quotient CKMMatrixSetoid) : S₁₃ V ^ 2 + C₁₃ V ^ 2 = 1 := by
|
||||
rw [← S₁₃_eq_sin_θ₁₃ V, C₁₃]
|
||||
exact Real.sin_sq_add_cos_sq (θ₁₃ V)
|
||||
|
@ -70,6 +101,7 @@ lemma S₁₂_nonneg (V : Quotient CKMMatrixSetoid) : 0 ≤ S₁₂ V := by
|
|||
exact VAbs_ge_zero 0 1 V
|
||||
exact Real.sqrt_nonneg (VudAbs V ^ 2 + VusAbs V ^ 2)
|
||||
|
||||
|
||||
lemma S₁₂_leq_one (V : Quotient CKMMatrixSetoid) : S₁₂ V ≤ 1 := by
|
||||
rw [S₁₂]
|
||||
rw [@div_le_one_iff]
|
||||
|
@ -96,6 +128,12 @@ lemma S₁₂_eq_ℂsin_θ₁₂ (V : Quotient CKMMatrixSetoid) : Complex.sin (
|
|||
rw [← S₁₂_eq_sin_θ₁₂]
|
||||
simp
|
||||
|
||||
lemma complexAbs_sin_θ₁₂ (V : Quotient CKMMatrixSetoid) : Complex.abs (Complex.sin (θ₁₂ V)) =
|
||||
sin (θ₁₂ V):= by
|
||||
rw [S₁₂_eq_ℂsin_θ₁₂, Complex.abs_ofReal]
|
||||
simp
|
||||
exact S₁₂_nonneg _
|
||||
|
||||
lemma S₁₂_of_Vub_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V = 1) : S₁₂ V = 0 := by
|
||||
rw [S₁₂]
|
||||
have h1 : 1 - VubAbs V ^ 2 = VudAbs V ^ 2 + VusAbs V ^ 2 := by
|
||||
|
@ -109,6 +147,12 @@ def C₁₂ (V : Quotient CKMMatrixSetoid) : ℝ := Real.cos (θ₁₂ V)
|
|||
lemma C₁₂_eq_ℂcos_θ₁₂ (V : Quotient CKMMatrixSetoid) : Complex.cos (θ₁₂ V) = C₁₂ V := by
|
||||
simp [C₁₂]
|
||||
|
||||
lemma complexAbs_cos_θ₁₂ (V : Quotient CKMMatrixSetoid) : Complex.abs (Complex.cos (θ₁₂ V)) =
|
||||
cos (θ₁₂ V):= by
|
||||
rw [C₁₂_eq_ℂcos_θ₁₂, Complex.abs_ofReal]
|
||||
simp
|
||||
exact Real.cos_arcsin_nonneg _
|
||||
|
||||
lemma C₁₂_of_Vub_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V = 1) : C₁₂ V = 1 := by
|
||||
rw [C₁₂, θ₁₂, Real.cos_arcsin, S₁₂_of_Vub_one ha]
|
||||
simp
|
||||
|
@ -205,6 +249,11 @@ lemma S₂₃_eq_ℂsin_θ₂₃ (V : Quotient CKMMatrixSetoid) : Complex.sin (
|
|||
rw [← S₂₃_eq_sin_θ₂₃]
|
||||
simp
|
||||
|
||||
lemma complexAbs_sin_θ₂₃ (V : Quotient CKMMatrixSetoid) : Complex.abs (Complex.sin (θ₂₃ V)) =
|
||||
sin (θ₂₃ V):= by
|
||||
rw [S₂₃_eq_ℂsin_θ₂₃, Complex.abs_ofReal]
|
||||
simp
|
||||
exact S₂₃_nonneg _
|
||||
|
||||
lemma S₂₃_of_Vub_eq_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V = 1) : S₂₃ V = VcdAbs V := by
|
||||
rw [S₂₃, if_pos ha]
|
||||
|
@ -218,6 +267,12 @@ def C₂₃ (V : Quotient CKMMatrixSetoid) : ℝ := Real.cos (θ₂₃ V)
|
|||
lemma C₂₃_eq_ℂcos_θ₂₃ (V : Quotient CKMMatrixSetoid) : Complex.cos (θ₂₃ V) = C₂₃ V := by
|
||||
simp [C₂₃]
|
||||
|
||||
lemma complexAbs_cos_θ₂₃ (V : Quotient CKMMatrixSetoid) : Complex.abs (Complex.cos (θ₂₃ V)) =
|
||||
cos (θ₂₃ V):= by
|
||||
rw [C₂₃_eq_ℂcos_θ₂₃, Complex.abs_ofReal]
|
||||
simp
|
||||
exact Real.cos_arcsin_nonneg _
|
||||
|
||||
lemma S₂₃_sq_add_C₂₃_sq (V : Quotient CKMMatrixSetoid) : S₂₃ V ^ 2 + C₂₃ V ^ 2 = 1 := by
|
||||
rw [← S₂₃_eq_sin_θ₂₃ V, C₂₃]
|
||||
exact Real.sin_sq_add_cos_sq (θ₂₃ V)
|
||||
|
@ -385,6 +440,148 @@ lemma eq_sP (U : CKMMatrix) {θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ} (hu : [U
|
|||
apply ext_Rows hu hc
|
||||
rw [hU, sP_cross, hu, hc]
|
||||
|
||||
lemma eq_phases_sP (θ₁₂ θ₁₃ θ₂₃ δ₁₃ δ₁₃' : ℝ) (h : cexp (δ₁₃ * I) = cexp (δ₁₃' * I)) :
|
||||
sP θ₁₂ θ₁₃ θ₂₃ δ₁₃ = sP θ₁₂ θ₁₃ θ₂₃ δ₁₃' := by
|
||||
simp [sP, standardParameterizationAsMatrix]
|
||||
apply CKMMatrix_ext
|
||||
simp
|
||||
rw [show exp (I * δ₁₃) = exp (I * δ₁₃') by rw [mul_comm, h, mul_comm]]
|
||||
rw [show cexp (-(I * ↑δ₁₃)) = cexp (-(I * ↑δ₁₃')) by rw [exp_neg, exp_neg, mul_comm, h, mul_comm]]
|
||||
|
||||
section zeroEntries
|
||||
variable (a b c d e f : ℝ)
|
||||
|
||||
lemma sP_cos_θ₁₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.cos (θ₁₃ ⟦V⟧) = 0) :
|
||||
sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||||
have hS13 := congrArg ofReal (S₁₃_of_Vub_one (cos_θ₁₃_zero h))
|
||||
simp [← S₁₃_eq_ℂsin_θ₁₃] at hS13
|
||||
have hC12 := congrArg ofReal (C₁₂_of_Vub_one (cos_θ₁₃_zero h))
|
||||
simp [← C₁₂_eq_ℂcos_θ₁₂] at hC12
|
||||
have hS12 := congrArg ofReal (S₁₂_of_Vub_one (cos_θ₁₃_zero h))
|
||||
simp [← S₁₂_eq_ℂsin_θ₁₂] at hS12
|
||||
use 0, 0, 0, δ₁₃, 0, -δ₁₃
|
||||
simp [sP, standardParameterizationAsMatrix, h, phaseShift, hS13, hC12, hS12]
|
||||
funext i j
|
||||
fin_cases i <;> fin_cases j <;>
|
||||
simp [mul_apply, Fin.sum_univ_three, mul_apply, Fin.sum_univ_three]
|
||||
rfl
|
||||
rfl
|
||||
|
||||
lemma sP_cos_θ₁₂_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.cos (θ₁₂ ⟦V⟧) = 0) :
|
||||
sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||||
use 0, δ₁₃, δ₁₃, -δ₁₃, 0, - δ₁₃
|
||||
have hb := exp_ne_zero (I * δ₁₃)
|
||||
simp [sP, standardParameterizationAsMatrix, h, phaseShift, exp_neg]
|
||||
funext i j
|
||||
fin_cases i <;> fin_cases j <;>
|
||||
simp [mul_apply, Fin.sum_univ_three, mul_apply, Fin.sum_univ_three]
|
||||
apply Or.inr
|
||||
rfl
|
||||
change _ = _ + _ * 0
|
||||
simp
|
||||
field_simp
|
||||
ring
|
||||
ring
|
||||
field_simp
|
||||
ring
|
||||
change _ = _ + _ * 0
|
||||
simp
|
||||
field_simp
|
||||
ring
|
||||
ring
|
||||
field_simp
|
||||
ring
|
||||
|
||||
lemma sP_cos_θ₂₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.cos (θ₂₃ ⟦V⟧) = 0) :
|
||||
sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||||
use 0, δ₁₃, 0, 0, 0, - δ₁₃
|
||||
have hb := exp_ne_zero (I * δ₁₃)
|
||||
simp [sP, standardParameterizationAsMatrix, h, phaseShift, exp_neg]
|
||||
funext i j
|
||||
fin_cases i <;> fin_cases j <;>
|
||||
simp [mul_apply, Fin.sum_univ_three, mul_apply, Fin.sum_univ_three]
|
||||
apply Or.inr
|
||||
rfl
|
||||
ring_nf
|
||||
change _ = _ + _ * 0
|
||||
simp
|
||||
ring
|
||||
field_simp
|
||||
ring
|
||||
|
||||
lemma sP_sin_θ₁₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.sin (θ₁₃ ⟦V⟧) = 0) :
|
||||
sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||||
use 0, 0, 0, 0, 0, 0
|
||||
simp [sP, standardParameterizationAsMatrix, h, phaseShift, exp_neg]
|
||||
funext i j
|
||||
fin_cases i <;> fin_cases j <;>
|
||||
simp [mul_apply, Fin.sum_univ_three, mul_apply, Fin.sum_univ_three]
|
||||
apply Or.inr
|
||||
rfl
|
||||
apply Or.inr
|
||||
rfl
|
||||
|
||||
lemma sP_sin_θ₁₂_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.sin (θ₁₂ ⟦V⟧) = 0) :
|
||||
sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||||
use 0, δ₁₃, δ₁₃, 0, -δ₁₃, - δ₁₃
|
||||
have hb := exp_ne_zero (I * δ₁₃)
|
||||
simp [sP, standardParameterizationAsMatrix, h, phaseShift, exp_neg]
|
||||
funext i j
|
||||
fin_cases i <;> fin_cases j <;>
|
||||
simp [mul_apply, Fin.sum_univ_three, mul_apply, Fin.sum_univ_three]
|
||||
apply Or.inr
|
||||
rfl
|
||||
change _ = _ + _ * 0
|
||||
simp
|
||||
ring
|
||||
field_simp
|
||||
ring
|
||||
field_simp
|
||||
ring
|
||||
change _ = _ + _ * 0
|
||||
simp
|
||||
ring
|
||||
field_simp
|
||||
ring
|
||||
field_simp
|
||||
ring
|
||||
|
||||
|
||||
lemma sP_sin_θ₂₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.sin (θ₂₃ ⟦V⟧) = 0) :
|
||||
sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||||
use 0, 0, δ₁₃, 0, 0, - δ₁₃
|
||||
have hb := exp_ne_zero (I * δ₁₃)
|
||||
simp [sP, standardParameterizationAsMatrix, h, phaseShift, exp_neg]
|
||||
funext i j
|
||||
fin_cases i <;> fin_cases j <;>
|
||||
simp [mul_apply, Fin.sum_univ_three, mul_apply, Fin.sum_univ_three]
|
||||
apply Or.inr
|
||||
rfl
|
||||
change _ = _ + _ * 0
|
||||
simp
|
||||
ring
|
||||
ring
|
||||
field_simp
|
||||
ring
|
||||
|
||||
|
||||
lemma Vs_zero_iff_cos_sin_zero (V : CKMMatrix) :
|
||||
VudAbs ⟦V⟧ = 0 ∨ VubAbs ⟦V⟧ = 0 ∨ VusAbs ⟦V⟧ = 0 ∨ VcbAbs ⟦V⟧ = 0 ∨ VtbAbs ⟦V⟧ = 0
|
||||
↔ Real.cos (θ₁₂ ⟦V⟧) = 0 ∨ Real.cos (θ₁₃ ⟦V⟧) = 0 ∨ Real.cos (θ₂₃ ⟦V⟧) = 0 ∨
|
||||
Real.sin (θ₁₂ ⟦V⟧) = 0 ∨ Real.sin (θ₁₃ ⟦V⟧) = 0 ∨ Real.sin (θ₂₃ ⟦V⟧) = 0 := by
|
||||
rw [VudAbs_eq_C₁₂_mul_C₁₃, VubAbs_eq_S₁₃, VusAbs_eq_S₁₂_mul_C₁₃, VcbAbs_eq_S₂₃_mul_C₁₃,
|
||||
VtbAbs_eq_C₂₃_mul_C₁₃]
|
||||
rw [C₁₂, C₁₃, C₂₃, S₁₂_eq_sin_θ₁₂, S₂₃_eq_sin_θ₂₃, S₁₃_eq_sin_θ₁₃]
|
||||
aesop
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
end zeroEntries
|
||||
|
||||
lemma UCond₁_eq_sP {V : CKMMatrix} (hb : [V]ud ≠ 0 ∨ [V]us ≠ 0) (ha : [V]cb ≠ 0)
|
||||
(hV : UCond₁ V) : V = sP (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) (- arg [V]ub) := by
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue