refactor: heartbeat reduction

This commit is contained in:
jstoobysmith 2024-10-28 07:36:41 +00:00
parent ca20ccd95c
commit fe9cb6d01c
2 changed files with 81 additions and 61 deletions

View file

@ -114,26 +114,40 @@ lemma leftContr_map_eq : ((Sum.elim c (OverColor.mk c1).hom ∘ finSumFinEquiv.s
simp only [Nat.succ_eq_add_one, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_natAdd,
Sum.elim_inr]
lemma sum_inl_succAbove_leftContrI_leftContrJ (k : Fin n) : finSumFinEquiv.symm
(leftContrEquivSuccSucc.symm
((q.leftContr (c1 := c1)).i.succAbove
((q.leftContr (c1 := c1)).j.succAbove
(
(finSumFinEquiv (Sum.inl k)))))) =
Sum.map (q.i.succAbove ∘ q.j.succAbove) id (Sum.inl k) := by
simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI,
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
erw [succAbove_leftContrJ_leftContrI_castAdd]
simp
set_option maxHeartbeats 0 in
lemma contrMap_prod :
(q.contrMap ▷ S.F.obj (OverColor.mk c1)) ≫ (S.F.μ _ ((OverColor.mk c1))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
(S.F.μ ((OverColor.mk c)) ((OverColor.mk c1))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
S.F.map (OverColor.equivToIso leftContrEquivSuccSucc).hom ≫ q.leftContr.contrMap
≫ S.F.map (OverColor.mkIso (q.leftContr_map_eq)).hom := by
ext1
refine HepLean.PiTensorProduct.induction_tmul (fun p q' => ?_)
change (S.F.map (equivToIso finSumFinEquiv).hom).hom
lemma sum_inr_succAbove_leftContrI_leftContrJ (k : Fin n1) : finSumFinEquiv.symm
(leftContrEquivSuccSucc.symm
((q.leftContr (c1 := c1)).i.succAbove
((q.leftContr (c1 := c1)).j.succAbove
(
(finSumFinEquiv (Sum.inr k)))))) =
Sum.map (q.i.succAbove ∘ q.j.succAbove) id (Sum.inr k) := by
simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI,
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
erw [succAbove_leftContrJ_leftContrI_natAdd]
simp
lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i }))
(q' : (i : (𝟭 Type).obj (OverColor.mk c1).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i })):
(S.F.map (equivToIso finSumFinEquiv).hom).hom
((S.F.μ (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)) (OverColor.mk c1)).hom
((q.contrMap.hom (PiTensorProduct.tprod S.k p)) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))
= (S.F.map (mkIso _).hom).hom
= (S.F.map (mkIso (by exact leftContr_map_eq q)).hom).hom
(q.leftContr.contrMap.hom
((S.F.map (equivToIso (@leftContrEquivSuccSucc n n1)).hom).hom
((S.F.map (equivToIso finSumFinEquiv).hom).hom
((S.F.μ (OverColor.mk c) (OverColor.mk c1)).hom
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q')))))
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))))) := by
conv_lhs => rw [contrMap, TensorSpecies.contrMap_tprod]
simp only [TensorSpecies.F_def]
conv_rhs => rw [lift.obj_μ_tprod_tmul]
@ -190,9 +204,7 @@ lemma contrMap_prod :
LinearEquiv.coe_coe]
apply hL
exact Eq.symm ((fun f => (Equiv.apply_eq_iff_eq_symm_apply f).mp) finSumFinEquiv rfl)
· erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply,
ModuleCat.id_apply]
simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
· simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
LinearMap.coe_toAddHom, equivToIso_homToEquiv]
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫ S.FDiscrete.map (Discrete.eqToHom _)).hom _
rw [← S.FDiscrete.map_comp]
@ -220,9 +232,6 @@ lemma contrMap_prod :
Iso.refl_hom, Action.id_hom, Iso.refl_inv, instMonoidalCategoryStruct_tensorObj_hom,
LinearEquiv.ofLinear_apply, Equiv.toFun_as_coe, equivToIso_mkIso_hom, Equiv.refl_symm,
Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv]
conv_rhs => repeat erw [ModuleCat.id_apply]
simp only [Nat.succ_eq_add_one, AddHom.toFun_eq_coe, LinearMap.coe_toAddHom,
LinearEquiv.coe_coe]
have h1 (l : (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).left ⊕ (OverColor.mk c1).left)
(l' : Fin n.succ.succ ⊕ Fin n1)
(h : Sum.elim c c1 l' = Sum.elim (c ∘ q.i.succAbove ∘ q.j.succAbove) c1 l)
@ -235,14 +244,13 @@ lemma contrMap_prod :
subst h'
match l with
| Sum.inl l =>
simp only [Nat.succ_eq_add_one, instMonoidalCategoryStruct_tensorObj_hom, mk_hom,
simp only [ instMonoidalCategoryStruct_tensorObj_hom, mk_hom,
Sum.elim_inl, Function.comp_apply, Functor.id_obj, Sum.map_inl, eqToHom_refl,
Discrete.functor_map_id, Action.id_hom, ModuleCat.id_apply]
rfl
| Sum.inr l =>
simp only [Nat.succ_eq_add_one, instMonoidalCategoryStruct_tensorObj_hom, mk_hom,
Sum.elim_inr, Functor.id_obj, Function.comp_apply, Sum.map_inr, id_eq, eqToHom_refl,
Discrete.functor_map_id, Action.id_hom, ModuleCat.id_apply]
simp only [instMonoidalCategoryStruct_tensorObj_hom, mk_hom, Sum.elim_inr, Functor.id_obj,
Function.comp_apply, Sum.map_inr, Discrete.functor_map_id, Action.id_hom]
rfl
refine h1 _ _ ?_ ?_
· simpa using Discrete.eqToIso.proof_1
@ -251,20 +259,18 @@ lemma contrMap_prod :
subst hk
erw [Equiv.symm_apply_apply]
match k with
| Sum.inl k =>
simp only [Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContr, finSumFinEquiv_apply_left,
Sum.map_inl, Function.comp_apply]
erw [Equiv.refl_apply, Equiv.refl_apply]
erw [succAbove_leftContrJ_leftContrI_castAdd]
simp only [Nat.succ_eq_add_one, Equiv.invFun_as_coe, Equiv.symm_apply_apply,
finSumFinEquiv_symm_apply_castAdd]
| Sum.inr k =>
simp [finSumFinEquiv_apply_left, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl, leftContr]
erw [Equiv.refl_apply, Equiv.refl_apply]
erw [succAbove_leftContrJ_leftContrI_natAdd]
simp only [Nat.succ_eq_add_one, Equiv.invFun_as_coe, Equiv.symm_apply_apply,
finSumFinEquiv_symm_apply_natAdd]
| Sum.inl k => exact q.sum_inl_succAbove_leftContrI_leftContrJ _
| Sum.inr k => exact q.sum_inr_succAbove_leftContrI_leftContrJ _
lemma contrMap_prod :
(q.contrMap ▷ S.F.obj (OverColor.mk c1)) ≫ (S.F.μ _ ((OverColor.mk c1))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
(S.F.μ ((OverColor.mk c)) ((OverColor.mk c1))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
S.F.map (OverColor.equivToIso leftContrEquivSuccSucc).hom ≫ q.leftContr.contrMap
≫ S.F.map (OverColor.mkIso (q.leftContr_map_eq)).hom := by
ext1
exact HepLean.PiTensorProduct.induction_tmul (fun p q' => q.contrMap_prod_tprod p q')
lemma contr_prod
(t : TensorTree S c) (t1 : TensorTree S c1) :
@ -360,22 +366,38 @@ lemma rightContr_map_eq : ((Sum.elim c1 (OverColor.mk c).hom ∘ finSumFinEquiv.
erw [succAbove_rightContrJ_rightContrI_natAdd]
simp only [finSumFinEquiv_symm_apply_natAdd, Sum.elim_inr, Function.comp_apply]
set_option maxHeartbeats 0 in
lemma prod_contrMap :
(S.F.obj (OverColor.mk c1) ◁ q.contrMap) ≫ (S.F.μ ((OverColor.mk c1)) _) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
(S.F.μ ((OverColor.mk c1)) ((OverColor.mk c))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
q.rightContr.contrMap ≫ S.F.map (OverColor.mkIso (q.rightContr_map_eq)).hom := by
ext1
refine HepLean.PiTensorProduct.induction_tmul (fun p q' => ?_)
change (S.F.map (equivToIso finSumFinEquiv).hom).hom
lemma sum_inl_succAbove_rightContrI_rightContrJ (k : Fin n1): (@finSumFinEquiv n1 n.succ.succ).symm
((q.rightContr (c1 := c1)).i.succAbove
((q.rightContr (c1 := c1)).j.succAbove
(((@finSumFinEquiv n1 n) (Sum.inl k))))) =
Sum.map id (q.i.succAbove ∘ q.j.succAbove) (finSumFinEquiv.symm (finSumFinEquiv (Sum.inl k))) := by
simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI,
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
erw [succAbove_rightContrJ_rightContrI_castAdd]
simp
lemma sum_inr_succAbove_rightContrI_rightContrJ (k : Fin n): (@finSumFinEquiv n1 n.succ.succ).symm
((q.rightContr (c1 := c1)).i.succAbove
((q.rightContr (c1 := c1)).j.succAbove
(
(finSumFinEquiv (Sum.inr k))))) =
Sum.map id (q.i.succAbove ∘ q.j.succAbove) (finSumFinEquiv.symm (finSumFinEquiv (Sum.inr k))):= by
simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI,
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
erw [succAbove_rightContrJ_rightContrI_natAdd]
simp
lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i }))
(q' : (i : (𝟭 Type).obj (OverColor.mk c).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i })):
(S.F.map (equivToIso finSumFinEquiv).hom).hom
((S.F.μ (OverColor.mk c1) (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove))).hom
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (q.contrMap.hom (PiTensorProduct.tprod S.k q')))) =
(S.F.map (mkIso _).hom).hom
(S.F.map (mkIso (by exact (rightContr_map_eq q))).hom).hom
(q.rightContr.contrMap.hom
(((S.F.map (equivToIso finSumFinEquiv).hom ).hom
((S.F.μ (OverColor.mk c1) (OverColor.mk c)).hom ((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q')))))
((S.F.μ (OverColor.mk c1) (OverColor.mk c)).hom ((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))))) := by
conv_lhs => rw [contrMap, TensorSpecies.contrMap_tprod]
simp only [TensorSpecies.F_def]
conv_rhs => rw [lift.obj_μ_tprod_tmul]
@ -473,21 +495,18 @@ lemma prod_contrMap :
(Hom.toEquiv_comp_inv_apply (mkIso (rightContr_map_eq q)).hom k)
· obtain ⟨k, hk⟩ := finSumFinEquiv.surjective k
subst hk
erw [Equiv.symm_apply_apply]
match k with
| Sum.inl k =>
simp only [Nat.succ_eq_add_one, rightContr, Nat.add_eq, Equiv.toFun_as_coe,
finSumFinEquiv_apply_left, Sum.map_inl, id_eq]
erw [Equiv.refl_apply, Equiv.refl_apply]
rw [succAbove_rightContrJ_rightContrI_castAdd]
simp only [Nat.succ_eq_add_one, Equiv.invFun_as_coe, finSumFinEquiv_symm_apply_castAdd]
| Sum.inr k =>
simp only [Nat.succ_eq_add_one, rightContr, Nat.add_eq, Equiv.toFun_as_coe,
finSumFinEquiv_apply_right, Sum.map_inr, Function.comp_apply]
erw [Equiv.refl_apply, Equiv.refl_apply]
rw [succAbove_rightContrJ_rightContrI_natAdd]
simp only [Equiv.invFun_as_coe, finSumFinEquiv_symm_apply_natAdd]
| Sum.inl k => exact sum_inl_succAbove_rightContrI_rightContrJ _ _
| Sum.inr k => exact sum_inr_succAbove_rightContrI_rightContrJ _ _
lemma prod_contrMap :
(S.F.obj (OverColor.mk c1) ◁ q.contrMap) ≫ (S.F.μ ((OverColor.mk c1)) _) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
(S.F.μ ((OverColor.mk c1)) ((OverColor.mk c))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
q.rightContr.contrMap ≫ S.F.map (OverColor.mkIso (q.rightContr_map_eq)).hom := by
ext1
exact HepLean.PiTensorProduct.induction_tmul (fun p q' => q.prod_contrMap_tprod p q')
lemma prod_contr (t1 : TensorTree S c1) (t : TensorTree S c) :
(prod t1 (contr q.i q.j q.h t)).tensor = ((perm (OverColor.mkIso q.rightContr_map_eq).hom