refactor: heartbeat reduction
This commit is contained in:
parent
ca20ccd95c
commit
fe9cb6d01c
2 changed files with 81 additions and 61 deletions
|
@ -114,26 +114,40 @@ lemma leftContr_map_eq : ((Sum.elim c (OverColor.mk c1).hom ∘ finSumFinEquiv.s
|
|||
simp only [Nat.succ_eq_add_one, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_natAdd,
|
||||
Sum.elim_inr]
|
||||
|
||||
lemma sum_inl_succAbove_leftContrI_leftContrJ (k : Fin n) : finSumFinEquiv.symm
|
||||
(leftContrEquivSuccSucc.symm
|
||||
((q.leftContr (c1 := c1)).i.succAbove
|
||||
((q.leftContr (c1 := c1)).j.succAbove
|
||||
(
|
||||
(finSumFinEquiv (Sum.inl k)))))) =
|
||||
Sum.map (q.i.succAbove ∘ q.j.succAbove) id (Sum.inl k) := by
|
||||
simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI,
|
||||
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
|
||||
erw [succAbove_leftContrJ_leftContrI_castAdd]
|
||||
simp
|
||||
|
||||
set_option maxHeartbeats 0 in
|
||||
lemma contrMap_prod :
|
||||
(q.contrMap ▷ S.F.obj (OverColor.mk c1)) ≫ (S.F.μ _ ((OverColor.mk c1))) ≫
|
||||
S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
|
||||
(S.F.μ ((OverColor.mk c)) ((OverColor.mk c1))) ≫
|
||||
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
|
||||
S.F.map (OverColor.equivToIso leftContrEquivSuccSucc).hom ≫ q.leftContr.contrMap
|
||||
≫ S.F.map (OverColor.mkIso (q.leftContr_map_eq)).hom := by
|
||||
ext1
|
||||
refine HepLean.PiTensorProduct.induction_tmul (fun p q' => ?_)
|
||||
change (S.F.map (equivToIso finSumFinEquiv).hom).hom
|
||||
lemma sum_inr_succAbove_leftContrI_leftContrJ (k : Fin n1) : finSumFinEquiv.symm
|
||||
(leftContrEquivSuccSucc.symm
|
||||
((q.leftContr (c1 := c1)).i.succAbove
|
||||
((q.leftContr (c1 := c1)).j.succAbove
|
||||
(
|
||||
(finSumFinEquiv (Sum.inr k)))))) =
|
||||
Sum.map (q.i.succAbove ∘ q.j.succAbove) id (Sum.inr k) := by
|
||||
simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI,
|
||||
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
|
||||
erw [succAbove_leftContrJ_leftContrI_natAdd]
|
||||
simp
|
||||
lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i }))
|
||||
(q' : (i : (𝟭 Type).obj (OverColor.mk c1).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i })):
|
||||
(S.F.map (equivToIso finSumFinEquiv).hom).hom
|
||||
((S.F.μ (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)) (OverColor.mk c1)).hom
|
||||
((q.contrMap.hom (PiTensorProduct.tprod S.k p)) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))
|
||||
= (S.F.map (mkIso _).hom).hom
|
||||
= (S.F.map (mkIso (by exact leftContr_map_eq q)).hom).hom
|
||||
(q.leftContr.contrMap.hom
|
||||
((S.F.map (equivToIso (@leftContrEquivSuccSucc n n1)).hom).hom
|
||||
((S.F.map (equivToIso finSumFinEquiv).hom).hom
|
||||
((S.F.μ (OverColor.mk c) (OverColor.mk c1)).hom
|
||||
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q')))))
|
||||
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))))) := by
|
||||
conv_lhs => rw [contrMap, TensorSpecies.contrMap_tprod]
|
||||
simp only [TensorSpecies.F_def]
|
||||
conv_rhs => rw [lift.obj_μ_tprod_tmul]
|
||||
|
@ -190,9 +204,7 @@ lemma contrMap_prod :
|
|||
LinearEquiv.coe_coe]
|
||||
apply hL
|
||||
exact Eq.symm ((fun f => (Equiv.apply_eq_iff_eq_symm_apply f).mp) finSumFinEquiv rfl)
|
||||
· erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply,
|
||||
ModuleCat.id_apply]
|
||||
simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
|
||||
· simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
|
||||
LinearMap.coe_toAddHom, equivToIso_homToEquiv]
|
||||
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫ S.FDiscrete.map (Discrete.eqToHom _)).hom _
|
||||
rw [← S.FDiscrete.map_comp]
|
||||
|
@ -220,9 +232,6 @@ lemma contrMap_prod :
|
|||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, instMonoidalCategoryStruct_tensorObj_hom,
|
||||
LinearEquiv.ofLinear_apply, Equiv.toFun_as_coe, equivToIso_mkIso_hom, Equiv.refl_symm,
|
||||
Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv]
|
||||
conv_rhs => repeat erw [ModuleCat.id_apply]
|
||||
simp only [Nat.succ_eq_add_one, AddHom.toFun_eq_coe, LinearMap.coe_toAddHom,
|
||||
LinearEquiv.coe_coe]
|
||||
have h1 (l : (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).left ⊕ (OverColor.mk c1).left)
|
||||
(l' : Fin n.succ.succ ⊕ Fin n1)
|
||||
(h : Sum.elim c c1 l' = Sum.elim (c ∘ q.i.succAbove ∘ q.j.succAbove) c1 l)
|
||||
|
@ -235,14 +244,13 @@ lemma contrMap_prod :
|
|||
subst h'
|
||||
match l with
|
||||
| Sum.inl l =>
|
||||
simp only [Nat.succ_eq_add_one, instMonoidalCategoryStruct_tensorObj_hom, mk_hom,
|
||||
simp only [ instMonoidalCategoryStruct_tensorObj_hom, mk_hom,
|
||||
Sum.elim_inl, Function.comp_apply, Functor.id_obj, Sum.map_inl, eqToHom_refl,
|
||||
Discrete.functor_map_id, Action.id_hom, ModuleCat.id_apply]
|
||||
rfl
|
||||
| Sum.inr l =>
|
||||
simp only [Nat.succ_eq_add_one, instMonoidalCategoryStruct_tensorObj_hom, mk_hom,
|
||||
Sum.elim_inr, Functor.id_obj, Function.comp_apply, Sum.map_inr, id_eq, eqToHom_refl,
|
||||
Discrete.functor_map_id, Action.id_hom, ModuleCat.id_apply]
|
||||
simp only [instMonoidalCategoryStruct_tensorObj_hom, mk_hom, Sum.elim_inr, Functor.id_obj,
|
||||
Function.comp_apply, Sum.map_inr, Discrete.functor_map_id, Action.id_hom]
|
||||
rfl
|
||||
refine h1 _ _ ?_ ?_
|
||||
· simpa using Discrete.eqToIso.proof_1
|
||||
|
@ -251,20 +259,18 @@ lemma contrMap_prod :
|
|||
subst hk
|
||||
erw [Equiv.symm_apply_apply]
|
||||
match k with
|
||||
| Sum.inl k =>
|
||||
simp only [Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContr, finSumFinEquiv_apply_left,
|
||||
Sum.map_inl, Function.comp_apply]
|
||||
erw [Equiv.refl_apply, Equiv.refl_apply]
|
||||
erw [succAbove_leftContrJ_leftContrI_castAdd]
|
||||
simp only [Nat.succ_eq_add_one, Equiv.invFun_as_coe, Equiv.symm_apply_apply,
|
||||
finSumFinEquiv_symm_apply_castAdd]
|
||||
| Sum.inr k =>
|
||||
simp [finSumFinEquiv_apply_left, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl, leftContr]
|
||||
erw [Equiv.refl_apply, Equiv.refl_apply]
|
||||
erw [succAbove_leftContrJ_leftContrI_natAdd]
|
||||
simp only [Nat.succ_eq_add_one, Equiv.invFun_as_coe, Equiv.symm_apply_apply,
|
||||
finSumFinEquiv_symm_apply_natAdd]
|
||||
| Sum.inl k => exact q.sum_inl_succAbove_leftContrI_leftContrJ _
|
||||
| Sum.inr k => exact q.sum_inr_succAbove_leftContrI_leftContrJ _
|
||||
|
||||
lemma contrMap_prod :
|
||||
(q.contrMap ▷ S.F.obj (OverColor.mk c1)) ≫ (S.F.μ _ ((OverColor.mk c1))) ≫
|
||||
S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
|
||||
(S.F.μ ((OverColor.mk c)) ((OverColor.mk c1))) ≫
|
||||
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
|
||||
S.F.map (OverColor.equivToIso leftContrEquivSuccSucc).hom ≫ q.leftContr.contrMap
|
||||
≫ S.F.map (OverColor.mkIso (q.leftContr_map_eq)).hom := by
|
||||
ext1
|
||||
exact HepLean.PiTensorProduct.induction_tmul (fun p q' => q.contrMap_prod_tprod p q')
|
||||
|
||||
lemma contr_prod
|
||||
(t : TensorTree S c) (t1 : TensorTree S c1) :
|
||||
|
@ -360,22 +366,38 @@ lemma rightContr_map_eq : ((Sum.elim c1 (OverColor.mk c).hom ∘ finSumFinEquiv.
|
|||
erw [succAbove_rightContrJ_rightContrI_natAdd]
|
||||
simp only [finSumFinEquiv_symm_apply_natAdd, Sum.elim_inr, Function.comp_apply]
|
||||
|
||||
set_option maxHeartbeats 0 in
|
||||
lemma prod_contrMap :
|
||||
(S.F.obj (OverColor.mk c1) ◁ q.contrMap) ≫ (S.F.μ ((OverColor.mk c1)) _) ≫
|
||||
S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
|
||||
(S.F.μ ((OverColor.mk c1)) ((OverColor.mk c))) ≫
|
||||
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
|
||||
q.rightContr.contrMap ≫ S.F.map (OverColor.mkIso (q.rightContr_map_eq)).hom := by
|
||||
ext1
|
||||
refine HepLean.PiTensorProduct.induction_tmul (fun p q' => ?_)
|
||||
change (S.F.map (equivToIso finSumFinEquiv).hom).hom
|
||||
|
||||
lemma sum_inl_succAbove_rightContrI_rightContrJ (k : Fin n1): (@finSumFinEquiv n1 n.succ.succ).symm
|
||||
((q.rightContr (c1 := c1)).i.succAbove
|
||||
((q.rightContr (c1 := c1)).j.succAbove
|
||||
(((@finSumFinEquiv n1 n) (Sum.inl k))))) =
|
||||
Sum.map id (q.i.succAbove ∘ q.j.succAbove) (finSumFinEquiv.symm (finSumFinEquiv (Sum.inl k))) := by
|
||||
simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI,
|
||||
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
|
||||
erw [succAbove_rightContrJ_rightContrI_castAdd]
|
||||
simp
|
||||
|
||||
lemma sum_inr_succAbove_rightContrI_rightContrJ (k : Fin n): (@finSumFinEquiv n1 n.succ.succ).symm
|
||||
((q.rightContr (c1 := c1)).i.succAbove
|
||||
((q.rightContr (c1 := c1)).j.succAbove
|
||||
(
|
||||
(finSumFinEquiv (Sum.inr k))))) =
|
||||
Sum.map id (q.i.succAbove ∘ q.j.succAbove) (finSumFinEquiv.symm (finSumFinEquiv (Sum.inr k))):= by
|
||||
simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI,
|
||||
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
|
||||
erw [succAbove_rightContrJ_rightContrI_natAdd]
|
||||
simp
|
||||
|
||||
|
||||
lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i }))
|
||||
(q' : (i : (𝟭 Type).obj (OverColor.mk c).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i })):
|
||||
(S.F.map (equivToIso finSumFinEquiv).hom).hom
|
||||
((S.F.μ (OverColor.mk c1) (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove))).hom
|
||||
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (q.contrMap.hom (PiTensorProduct.tprod S.k q')))) =
|
||||
(S.F.map (mkIso _).hom).hom
|
||||
(S.F.map (mkIso (by exact (rightContr_map_eq q))).hom).hom
|
||||
(q.rightContr.contrMap.hom
|
||||
(((S.F.map (equivToIso finSumFinEquiv).hom ).hom
|
||||
((S.F.μ (OverColor.mk c1) (OverColor.mk c)).hom ((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q')))))
|
||||
((S.F.μ (OverColor.mk c1) (OverColor.mk c)).hom ((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))))) := by
|
||||
conv_lhs => rw [contrMap, TensorSpecies.contrMap_tprod]
|
||||
simp only [TensorSpecies.F_def]
|
||||
conv_rhs => rw [lift.obj_μ_tprod_tmul]
|
||||
|
@ -473,21 +495,18 @@ lemma prod_contrMap :
|
|||
(Hom.toEquiv_comp_inv_apply (mkIso (rightContr_map_eq q)).hom k)
|
||||
· obtain ⟨k, hk⟩ := finSumFinEquiv.surjective k
|
||||
subst hk
|
||||
erw [Equiv.symm_apply_apply]
|
||||
match k with
|
||||
| Sum.inl k =>
|
||||
simp only [Nat.succ_eq_add_one, rightContr, Nat.add_eq, Equiv.toFun_as_coe,
|
||||
finSumFinEquiv_apply_left, Sum.map_inl, id_eq]
|
||||
erw [Equiv.refl_apply, Equiv.refl_apply]
|
||||
rw [succAbove_rightContrJ_rightContrI_castAdd]
|
||||
simp only [Nat.succ_eq_add_one, Equiv.invFun_as_coe, finSumFinEquiv_symm_apply_castAdd]
|
||||
| Sum.inr k =>
|
||||
simp only [Nat.succ_eq_add_one, rightContr, Nat.add_eq, Equiv.toFun_as_coe,
|
||||
finSumFinEquiv_apply_right, Sum.map_inr, Function.comp_apply]
|
||||
erw [Equiv.refl_apply, Equiv.refl_apply]
|
||||
rw [succAbove_rightContrJ_rightContrI_natAdd]
|
||||
simp only [Equiv.invFun_as_coe, finSumFinEquiv_symm_apply_natAdd]
|
||||
| Sum.inl k => exact sum_inl_succAbove_rightContrI_rightContrJ _ _
|
||||
| Sum.inr k => exact sum_inr_succAbove_rightContrI_rightContrJ _ _
|
||||
|
||||
lemma prod_contrMap :
|
||||
(S.F.obj (OverColor.mk c1) ◁ q.contrMap) ≫ (S.F.μ ((OverColor.mk c1)) _) ≫
|
||||
S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
|
||||
(S.F.μ ((OverColor.mk c1)) ((OverColor.mk c))) ≫
|
||||
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
|
||||
q.rightContr.contrMap ≫ S.F.map (OverColor.mkIso (q.rightContr_map_eq)).hom := by
|
||||
ext1
|
||||
exact HepLean.PiTensorProduct.induction_tmul (fun p q' => q.prod_contrMap_tprod p q')
|
||||
|
||||
lemma prod_contr (t1 : TensorTree S c1) (t : TensorTree S c) :
|
||||
(prod t1 (contr q.i q.j q.h t)).tensor = ((perm (OverColor.mkIso q.rightContr_map_eq).hom
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue