feat: Start at Prod Contr
This commit is contained in:
parent
69a22eda65
commit
fed4828029
1 changed files with 105 additions and 0 deletions
105
HepLean/Tensors/Tree/NodeIdentities/ProdContr.lean
Normal file
105
HepLean/Tensors/Tree/NodeIdentities/ProdContr.lean
Normal file
|
@ -0,0 +1,105 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
/-!
|
||||
|
||||
## Products and contractions
|
||||
|
||||
|
||||
-/
|
||||
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
open OverColor
|
||||
open HepLean.Fin
|
||||
|
||||
namespace TensorTree
|
||||
|
||||
variable {S : TensorSpecies}
|
||||
|
||||
namespace ContrPair
|
||||
variable {n n1 : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} (q : ContrPair c)
|
||||
|
||||
/-!
|
||||
|
||||
## Left contractions.
|
||||
|
||||
-/
|
||||
/-- An equivalence needed to perform contraction. For specified `n` and `n1`
|
||||
this reduces to an identity. -/
|
||||
def leftContrEquivSuccSucc : Fin (n.succ.succ + n1) ≃ Fin ((n + n1).succ.succ) :=
|
||||
(Fin.castOrderIso (by omega)).toEquiv
|
||||
|
||||
/-- An equivalence needed to perform contraction. For specified `n` and `n1`
|
||||
this reduces to an identity. -/
|
||||
def leftContrEquivSucc : Fin (n.succ + n1) ≃ Fin ((n + n1).succ) :=
|
||||
(Fin.castOrderIso (by omega)).toEquiv
|
||||
|
||||
def leftContrI (n1 : ℕ): Fin ((n + n1).succ.succ) := leftContrEquivSuccSucc <| Fin.castAdd n1 q.i
|
||||
|
||||
def leftContrJ (n1 : ℕ) : Fin ((n + n1).succ) := leftContrEquivSucc <| Fin.castAdd n1 q.j
|
||||
|
||||
@[simp]
|
||||
lemma leftContrJ_succAbove_leftContrI : (q.leftContrI n1).succAbove (q.leftContrJ n1)
|
||||
= leftContrEquivSuccSucc (Fin.castAdd n1 (q.i.succAbove q.j)) := by
|
||||
rw [leftContrI, leftContrJ]
|
||||
rw [Fin.ext_iff]
|
||||
simp only [Fin.succAbove, Nat.succ_eq_add_one, leftContrEquivSucc, RelIso.coe_fn_toEquiv,
|
||||
Fin.castOrderIso_apply, leftContrEquivSuccSucc, Fin.coe_cast, Fin.coe_castAdd]
|
||||
split_ifs
|
||||
<;> rename_i h1 h2
|
||||
<;> rw [Fin.lt_def] at h1 h2
|
||||
· simp only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd]
|
||||
· simp_all only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd, not_true_eq_false]
|
||||
· simp_all only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd, not_lt, Fin.val_succ,
|
||||
add_right_eq_self, one_ne_zero]
|
||||
omega
|
||||
· simp only [Fin.val_succ, Fin.coe_cast, Fin.coe_castAdd]
|
||||
|
||||
def leftContr : ContrPair ((Sum.elim c c1 ∘ (@finSumFinEquiv n.succ.succ n1).symm.toFun) ∘
|
||||
leftContrEquivSuccSucc.symm) where
|
||||
i := q.leftContrI n1
|
||||
j := q.leftContrJ n1
|
||||
h := by
|
||||
simp only [Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrJ_succAbove_leftContrI,
|
||||
Function.comp_apply, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
|
||||
simpa only [leftContrI, Nat.succ_eq_add_one, Equiv.symm_apply_apply,
|
||||
finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl] using q.h
|
||||
|
||||
lemma leftContr_map_eq : ((Sum.elim c (OverColor.mk c1).hom ∘ finSumFinEquiv.symm.toFun) ∘ ⇑leftContrEquivSuccSucc.symm) ∘
|
||||
(q.leftContr (c1 := c1)).i.succAbove ∘ (q.leftContr (c1 := c1)).j.succAbove =
|
||||
Sum.elim (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).hom (OverColor.mk c1).hom ∘
|
||||
⇑finSumFinEquiv.symm := by
|
||||
funext x
|
||||
simp
|
||||
sorry
|
||||
|
||||
lemma contrMap_prod :
|
||||
(q.contrMap ▷ S.F.obj (OverColor.mk c1)) ≫ (S.F.μ _ ((OverColor.mk c1))) ≫
|
||||
S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
|
||||
(S.F.μ ((OverColor.mk c)) ((OverColor.mk c1))) ≫
|
||||
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
|
||||
S.F.map (OverColor.equivToIso leftContrEquivSuccSucc).hom ≫ q.leftContr.contrMap
|
||||
≫ S.F.map (OverColor.mkIso (q.leftContr_map_eq)).hom := by
|
||||
sorry
|
||||
|
||||
/-!
|
||||
|
||||
## Right contractions.
|
||||
|
||||
-/
|
||||
|
||||
end ContrPair
|
||||
|
||||
theorem contr_prod {n n1 : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ}
|
||||
{j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i))
|
||||
(t : TensorTree S c) (t1 : TensorTree S c1) :
|
||||
(prod t t1).tensor = sorry :=by
|
||||
|
||||
sorry
|
||||
|
||||
end TensorTree
|
Loading…
Add table
Add a link
Reference in a new issue