feat: Start at Prod Contr

This commit is contained in:
jstoobysmith 2024-10-25 19:29:41 +00:00
parent 69a22eda65
commit fed4828029

View file

@ -0,0 +1,105 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Basic
/-!
## Products and contractions
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open OverColor
open HepLean.Fin
namespace TensorTree
variable {S : TensorSpecies}
namespace ContrPair
variable {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} (q : ContrPair c)
/-!
## Left contractions.
-/
/-- An equivalence needed to perform contraction. For specified `n` and `n1`
this reduces to an identity. -/
def leftContrEquivSuccSucc : Fin (n.succ.succ + n1) ≃ Fin ((n + n1).succ.succ) :=
(Fin.castOrderIso (by omega)).toEquiv
/-- An equivalence needed to perform contraction. For specified `n` and `n1`
this reduces to an identity. -/
def leftContrEquivSucc : Fin (n.succ + n1) ≃ Fin ((n + n1).succ) :=
(Fin.castOrderIso (by omega)).toEquiv
def leftContrI (n1 : ): Fin ((n + n1).succ.succ) := leftContrEquivSuccSucc <| Fin.castAdd n1 q.i
def leftContrJ (n1 : ) : Fin ((n + n1).succ) := leftContrEquivSucc <| Fin.castAdd n1 q.j
@[simp]
lemma leftContrJ_succAbove_leftContrI : (q.leftContrI n1).succAbove (q.leftContrJ n1)
= leftContrEquivSuccSucc (Fin.castAdd n1 (q.i.succAbove q.j)) := by
rw [leftContrI, leftContrJ]
rw [Fin.ext_iff]
simp only [Fin.succAbove, Nat.succ_eq_add_one, leftContrEquivSucc, RelIso.coe_fn_toEquiv,
Fin.castOrderIso_apply, leftContrEquivSuccSucc, Fin.coe_cast, Fin.coe_castAdd]
split_ifs
<;> rename_i h1 h2
<;> rw [Fin.lt_def] at h1 h2
· simp only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd]
· simp_all only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd, not_true_eq_false]
· simp_all only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd, not_lt, Fin.val_succ,
add_right_eq_self, one_ne_zero]
omega
· simp only [Fin.val_succ, Fin.coe_cast, Fin.coe_castAdd]
def leftContr : ContrPair ((Sum.elim c c1 ∘ (@finSumFinEquiv n.succ.succ n1).symm.toFun) ∘
leftContrEquivSuccSucc.symm) where
i := q.leftContrI n1
j := q.leftContrJ n1
h := by
simp only [Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrJ_succAbove_leftContrI,
Function.comp_apply, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
simpa only [leftContrI, Nat.succ_eq_add_one, Equiv.symm_apply_apply,
finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl] using q.h
lemma leftContr_map_eq : ((Sum.elim c (OverColor.mk c1).hom ∘ finSumFinEquiv.symm.toFun) ∘ ⇑leftContrEquivSuccSucc.symm) ∘
(q.leftContr (c1 := c1)).i.succAbove ∘ (q.leftContr (c1 := c1)).j.succAbove =
Sum.elim (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).hom (OverColor.mk c1).hom ∘
⇑finSumFinEquiv.symm := by
funext x
simp
sorry
lemma contrMap_prod :
(q.contrMap ▷ S.F.obj (OverColor.mk c1)) ≫ (S.F.μ _ ((OverColor.mk c1))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
(S.F.μ ((OverColor.mk c)) ((OverColor.mk c1))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
S.F.map (OverColor.equivToIso leftContrEquivSuccSucc).hom ≫ q.leftContr.contrMap
≫ S.F.map (OverColor.mkIso (q.leftContr_map_eq)).hom := by
sorry
/-!
## Right contractions.
-/
end ContrPair
theorem contr_prod {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ}
{j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i))
(t : TensorTree S c) (t1 : TensorTree S c1) :
(prod t t1).tensor = sorry :=by
sorry
end TensorTree