refactor: Split sign files

This commit is contained in:
jstoobysmith 2025-02-03 10:47:18 +00:00
parent da030df5ce
commit ff4a56226c
14 changed files with 829 additions and 739 deletions

View file

@ -589,191 +589,6 @@ lemma subContraction_card_plus_quotContraction_card_eq (S : Finset (Finset (Fin
end
open FieldStatistic
lemma stat_signFinset_right {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (i j : Fin [φsΛ]ᵘᶜ.length) :
(𝓕 |>ₛ ⟨[φsΛ]ᵘᶜ.get, φsucΛ.signFinset i j⟩) =
(𝓕 |>ₛ ⟨φs.get, (φsucΛ.signFinset i j).map uncontractedListEmd⟩) := by
simp only [ofFinset]
congr 1
rw [← fin_finset_sort_map_monotone]
simp only [List.map_map, List.map_inj_left, Finset.mem_sort, List.get_eq_getElem,
Function.comp_apply, getElem_uncontractedListEmd, implies_true]
intro i j h
exact uncontractedListEmd_strictMono h
lemma signFinset_right_map_uncontractedListEmd_eq_filter {φs : List 𝓕.States}
(φsΛ : WickContraction φs.length) (φsucΛ : WickContraction [φsΛ]ᵘᶜ.length)
(i j : Fin [φsΛ]ᵘᶜ.length) : (φsucΛ.signFinset i j).map uncontractedListEmd =
((join φsΛ φsucΛ).signFinset (uncontractedListEmd i) (uncontractedListEmd j)).filter
(fun c => c ∈ φsΛ.uncontracted) := by
ext a
simp only [Finset.mem_map, Finset.mem_filter]
apply Iff.intro
· intro h
obtain ⟨a, ha, rfl⟩ := h
apply And.intro
· simp_all only [signFinset, Finset.mem_filter, Finset.mem_univ, true_and,
join_getDual?_apply_uncontractedListEmb, Option.map_eq_none', Option.isSome_map']
apply And.intro
· exact uncontractedListEmd_strictMono ha.1
· apply And.intro
· exact uncontractedListEmd_strictMono ha.2.1
· have ha2 := ha.2.2
simp_all only [and_true]
rcases ha2 with ha2 | ha2
· simp [ha2]
· right
intro h
apply lt_of_lt_of_eq (uncontractedListEmd_strictMono (ha2 h))
rw [Option.get_map]
· exact uncontractedListEmd_mem_uncontracted a
· intro h
have h2 := h.2
have h2' := uncontractedListEmd_surjective_mem_uncontracted a h.2
obtain ⟨a, rfl⟩ := h2'
use a
simp_all only [signFinset, Finset.mem_filter, Finset.mem_univ,
join_getDual?_apply_uncontractedListEmb, Option.map_eq_none', Option.isSome_map', true_and,
and_true, and_self]
apply And.intro
· have h1 := h.1
rw [StrictMono.lt_iff_lt] at h1
exact h1
exact fun _ _ h => uncontractedListEmd_strictMono h
· apply And.intro
· have h1 := h.2.1
rw [StrictMono.lt_iff_lt] at h1
exact h1
exact fun _ _ h => uncontractedListEmd_strictMono h
· have h1 := h.2.2
simp_all only [and_true]
rcases h1 with h1 | h1
· simp [h1]
· right
intro h
have h1' := h1 h
have hl : uncontractedListEmd i < uncontractedListEmd ((φsucΛ.getDual? a).get h) := by
apply lt_of_lt_of_eq h1'
simp [Option.get_map]
rw [StrictMono.lt_iff_lt] at hl
exact hl
exact fun _ _ h => uncontractedListEmd_strictMono h
lemma sign_right_eq_prod_mul_prod {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) :
φsucΛ.sign = (∏ a, 𝓢(𝓕|>ₛ [φsΛ]ᵘᶜ[φsucΛ.sndFieldOfContract a], 𝓕|>ₛ ⟨φs.get,
((join φsΛ φsucΛ).signFinset (uncontractedListEmd (φsucΛ.fstFieldOfContract a))
(uncontractedListEmd (φsucΛ.sndFieldOfContract a))).filter
(fun c => ¬ c ∈ φsΛ.uncontracted)⟩)) *
(∏ a, 𝓢(𝓕|>ₛ [φsΛ]ᵘᶜ[φsucΛ.sndFieldOfContract a], 𝓕|>ₛ ⟨φs.get,
((join φsΛ φsucΛ).signFinset (uncontractedListEmd (φsucΛ.fstFieldOfContract a))
(uncontractedListEmd (φsucΛ.sndFieldOfContract a)))⟩)) := by
rw [← Finset.prod_mul_distrib, sign]
congr
funext a
rw [← map_mul]
congr
rw [stat_signFinset_right, signFinset_right_map_uncontractedListEmd_eq_filter]
rw [ofFinset_filter]
lemma join_singleton_signFinset_eq_filter {φs : List 𝓕.States}
{i j : Fin φs.length} (h : i < j)
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
(join (singleton h) φsucΛ).signFinset i j =
((singleton h).signFinset i j).filter (fun c => ¬
(((join (singleton h) φsucΛ).getDual? c).isSome ∧
((h1 : ((join (singleton h) φsucΛ).getDual? c).isSome) →
(((join (singleton h) φsucΛ).getDual? c).get h1) < i))) := by
ext a
simp only [signFinset, Finset.mem_filter, Finset.mem_univ, true_and, not_and, not_forall, not_lt,
and_assoc, and_congr_right_iff]
intro h1 h2
have h1 : (singleton h).getDual? a = none := by
rw [singleton_getDual?_eq_none_iff_neq]
omega
simp only [h1, Option.isSome_none, Bool.false_eq_true, IsEmpty.forall_iff, or_self, true_and]
apply Iff.intro
· intro h1 h2
rcases h1 with h1 | h1
· simp only [h1, Option.isSome_none, Bool.false_eq_true, IsEmpty.exists_iff]
have h2' : ¬ (((singleton h).join φsucΛ).getDual? a).isSome := by
exact Option.not_isSome_iff_eq_none.mpr h1
exact h2' h2
use h2
have h1 := h1 h2
omega
· intro h2
by_cases h2' : (((singleton h).join φsucΛ).getDual? a).isSome = true
· have h2 := h2 h2'
obtain ⟨hb, h2⟩ := h2
right
intro hl
apply lt_of_le_of_ne h2
by_contra hn
have hij : ((singleton h).join φsucΛ).getDual? i = j := by
rw [@getDual?_eq_some_iff_mem]
simp [join, singleton]
simp only [hn, getDual?_getDual?_get_get, Option.some.injEq] at hij
omega
· simp only [Bool.not_eq_true, Option.not_isSome, Option.isNone_iff_eq_none] at h2'
simp [h2']
lemma join_singleton_left_signFinset_eq_filter {φs : List 𝓕.States}
{i j : Fin φs.length} (h : i < j)
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
(𝓕 |>ₛ ⟨φs.get, (singleton h).signFinset i j⟩)
= (𝓕 |>ₛ ⟨φs.get, (join (singleton h) φsucΛ).signFinset i j⟩) *
(𝓕 |>ₛ ⟨φs.get, ((singleton h).signFinset i j).filter (fun c =>
(((join (singleton h) φsucΛ).getDual? c).isSome ∧
((h1 : ((join (singleton h) φsucΛ).getDual? c).isSome) →
(((join (singleton h) φsucΛ).getDual? c).get h1) < i)))⟩) := by
conv_rhs =>
left
rw [join_singleton_signFinset_eq_filter]
rw [mul_comm]
exact (ofFinset_filter_mul_neg 𝓕.statesStatistic _ _ _).symm
/-- The difference in sign between `φsucΛ.sign` and the direct contribution of `φsucΛ` to
`(join (singleton h) φsucΛ)`. -/
def joinSignRightExtra {φs : List 𝓕.States}
{i j : Fin φs.length} (h : i < j)
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) : :=
∏ a, 𝓢(𝓕|>ₛ [singleton h]ᵘᶜ[φsucΛ.sndFieldOfContract a], 𝓕|>ₛ ⟨φs.get,
((join (singleton h) φsucΛ).signFinset (uncontractedListEmd (φsucΛ.fstFieldOfContract a))
(uncontractedListEmd (φsucΛ.sndFieldOfContract a))).filter
(fun c => ¬ c ∈ (singleton h).uncontracted)⟩)
/-- The difference in sign between `(singleton h).sign` and the direct contribution of
`(singleton h)` to `(join (singleton h) φsucΛ)`. -/
def joinSignLeftExtra {φs : List 𝓕.States}
{i j : Fin φs.length} (h : i < j)
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) : :=
𝓢(𝓕 |>ₛ φs[j], (𝓕 |>ₛ ⟨φs.get, ((singleton h).signFinset i j).filter (fun c =>
(((join (singleton h) φsucΛ).getDual? c).isSome ∧
((h1 : ((join (singleton h) φsucΛ).getDual? c).isSome) →
(((join (singleton h) φsucΛ).getDual? c).get h1) < i)))⟩))
lemma join_singleton_sign_left {φs : List 𝓕.States}
{i j : Fin φs.length} (h : i < j)
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
(singleton h).sign = 𝓢(𝓕 |>ₛ φs[j],
(𝓕 |>ₛ ⟨φs.get, (join (singleton h) φsucΛ).signFinset i j⟩)) * (joinSignLeftExtra h φsucΛ) := by
rw [singleton_sign_expand]
rw [join_singleton_left_signFinset_eq_filter h φsucΛ]
rw [map_mul]
rfl
lemma join_singleton_sign_right {φs : List 𝓕.States}
{i j : Fin φs.length} (h : i < j)
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
φsucΛ.sign =
(joinSignRightExtra h φsucΛ) *
(∏ a, 𝓢(𝓕|>ₛ [singleton h]ᵘᶜ[φsucΛ.sndFieldOfContract a], 𝓕|>ₛ ⟨φs.get,
((join (singleton h) φsucΛ).signFinset (uncontractedListEmd (φsucΛ.fstFieldOfContract a))
(uncontractedListEmd (φsucΛ.sndFieldOfContract a)))⟩)) := by
rw [sign_right_eq_prod_mul_prod]
rfl
@[simp]
lemma join_singleton_getDual?_left {φs : List 𝓕.States}
{i j : Fin φs.length} (h : i < j)
@ -793,200 +608,6 @@ lemma join_singleton_getDual?_right {φs : List 𝓕.States}
left
exact Finset.pair_comm j i
lemma joinSignRightExtra_eq_i_j_finset_eq_if {φs : List 𝓕.States}
{i j : Fin φs.length} (h : i < j)
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
joinSignRightExtra h φsucΛ = ∏ a,
𝓢((𝓕|>ₛ [singleton h]ᵘᶜ[φsucΛ.sndFieldOfContract a]),
𝓕 |>ₛ ⟨φs.get, (if uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j ∧
j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) ∧
uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i then {j} else ∅)
(if uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i ∧
i < uncontractedListEmd (φsucΛ.sndFieldOfContract a) then {i} else ∅)⟩) := by
rw [joinSignRightExtra]
congr
funext a
congr
rw [signFinset]
rw [Finset.filter_comm]
have h11 : (Finset.filter (fun c => c ∉ (singleton h).uncontracted) Finset.univ) = {i, j} := by
ext x
simp only [Finset.mem_filter, Finset.mem_univ, true_and, Finset.mem_insert,
Finset.mem_singleton]
rw [@mem_uncontracted_iff_not_contracted]
simp only [singleton, Finset.mem_singleton, forall_eq, Finset.mem_insert, not_or, not_and,
Decidable.not_not]
omega
rw [h11]
ext x
simp only [Finset.mem_filter, Finset.mem_insert, Finset.mem_singleton, Finset.mem_union]
have hjneqfst := singleton_uncontractedEmd_neq_right h (φsucΛ.fstFieldOfContract a)
have hjneqsnd := singleton_uncontractedEmd_neq_right h (φsucΛ.sndFieldOfContract a)
have hineqfst := singleton_uncontractedEmd_neq_left h (φsucΛ.fstFieldOfContract a)
have hineqsnd := singleton_uncontractedEmd_neq_left h (φsucΛ.sndFieldOfContract a)
by_cases hj1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j
· simp only [hj1, false_and, ↓reduceIte, Finset.not_mem_empty, false_or]
have hi1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega
simp only [hi1, false_and, ↓reduceIte, Finset.not_mem_empty, iff_false, not_and, not_or,
not_forall, not_lt]
intro hxij h1 h2
omega
· have hj1 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j := by
omega
by_cases hi1 : ¬ i < uncontractedListEmd (φsucΛ.sndFieldOfContract a)
· simp only [hi1, and_false, ↓reduceIte, Finset.not_mem_empty, or_false]
have hj2 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega
simp only [hj2, false_and, and_false, ↓reduceIte, Finset.not_mem_empty, iff_false, not_and,
not_or, not_forall, not_lt]
intro hxij h1 h2
omega
· have hi1 : i < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by
omega
simp only [hj1, true_and, hi1, and_true]
by_cases hi2 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i
· simp only [hi2, and_false, ↓reduceIte, Finset.not_mem_empty, or_self, iff_false, not_and,
not_or, not_forall, not_lt]
by_cases hj3 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a)
· omega
· have hj4 : j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega
intro h
rcases h with h | h
· subst h
omega
· subst h
simp only [join_singleton_getDual?_right, reduceCtorEq, not_false_eq_true,
Option.get_some, Option.isSome_some, exists_const, true_and]
omega
· have hi2 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega
simp only [hi2, and_true, ↓reduceIte, Finset.mem_singleton]
by_cases hj3 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a)
· simp only [hj3, ↓reduceIte, Finset.not_mem_empty, false_or]
apply Iff.intro
· intro h
omega
· intro h
subst h
simp only [true_or, join_singleton_getDual?_left, reduceCtorEq, Option.isSome_some,
Option.get_some, forall_const, false_or, true_and]
omega
· have hj3 : j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega
simp only [hj3, ↓reduceIte, Finset.mem_singleton]
apply Iff.intro
· intro h
omega
· intro h
rcases h with h1 | h1
· subst h1
simp only [or_true, join_singleton_getDual?_right, reduceCtorEq, Option.isSome_some,
Option.get_some, forall_const, false_or, true_and]
omega
· subst h1
simp only [true_or, join_singleton_getDual?_left, reduceCtorEq, Option.isSome_some,
Option.get_some, forall_const, false_or, true_and]
omega
lemma joinSignLeftExtra_eq_joinSignRightExtra {φs : List 𝓕.States}
{i j : Fin φs.length} (h : i < j) (hs : (𝓕 |>ₛ φs[i]) = (𝓕 |>ₛ φs[j]))
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
joinSignLeftExtra h φsucΛ = joinSignRightExtra h φsucΛ := by
/- Simplifying joinSignLeftExtra. -/
rw [joinSignLeftExtra]
rw [ofFinset_eq_prod]
rw [map_prod]
let e2 : Fin φs.length ≃ {x // (((singleton h).join φsucΛ).getDual? x).isSome} ⊕
{x // ¬ (((singleton h).join φsucΛ).getDual? x).isSome} := by
exact (Equiv.sumCompl fun a => (((singleton h).join φsucΛ).getDual? a).isSome = true).symm
rw [← e2.symm.prod_comp]
simp only [Fin.getElem_fin, Fintype.prod_sum_type, instCommGroup]
conv_lhs =>
enter [2, 2, x]
simp only [Equiv.symm_symm, Equiv.sumCompl_apply_inl, Equiv.sumCompl_apply_inr, e2]
rw [if_neg (by
simp only [Finset.mem_filter, mem_signFinset, not_and, not_forall, not_lt, and_imp]
intro h1 h2
have hx := x.2
simp_all)]
simp only [Finset.mem_filter, mem_signFinset, map_one, Finset.prod_const_one, mul_one]
rw [← ((singleton h).join φsucΛ).sigmaContractedEquiv.prod_comp]
erw [Finset.prod_sigma]
conv_lhs =>
enter [2, a]
rw [prod_finset_eq_mul_fst_snd]
simp [e2, sigmaContractedEquiv]
rw [prod_join]
rw [singleton_prod]
simp only [join_fstFieldOfContract_joinLiftLeft, singleton_fstFieldOfContract,
join_sndFieldOfContract_joinLift, singleton_sndFieldOfContract, lt_self_iff_false, and_false,
↓reduceIte, map_one, mul_one, join_fstFieldOfContract_joinLiftRight,
join_sndFieldOfContract_joinLiftRight, getElem_uncontractedListEmd]
rw [if_neg (by omega)]
simp only [map_one, one_mul]
/- Introducing joinSignRightExtra. -/
rw [joinSignRightExtra_eq_i_j_finset_eq_if]
congr
funext a
have hjneqsnd := singleton_uncontractedEmd_neq_right h (φsucΛ.sndFieldOfContract a)
have hl : uncontractedListEmd (φsucΛ.fstFieldOfContract a) <
uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by
apply uncontractedListEmd_strictMono
exact fstFieldOfContract_lt_sndFieldOfContract φsucΛ a
by_cases hj1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j
· have hi1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega
simp [hj1, hi1]
· have hj1 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j := by omega
simp only [hj1, and_true, instCommGroup, Fin.getElem_fin, true_and]
by_cases hi2 : ¬ i < uncontractedListEmd (φsucΛ.sndFieldOfContract a)
· have hi1 : ¬ i < uncontractedListEmd (φsucΛ.fstFieldOfContract a) := by omega
have hj2 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega
simp [hi2, hj2, hi1]
· have hi2 : i < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega
have hi2n : ¬ uncontractedListEmd (φsucΛ.sndFieldOfContract a) < i := by omega
simp only [hi2n, and_false, ↓reduceIte, map_one, hi2, true_and, one_mul, and_true]
by_cases hj2 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a)
· simp only [hj2, false_and, ↓reduceIte, Finset.empty_union]
have hj2 : uncontractedListEmd (φsucΛ.sndFieldOfContract a) < j:= by omega
simp only [hj2, true_and]
by_cases hi1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i
· simp [hi1]
· have hi1 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega
simp only [hi1, ↓reduceIte, ofFinset_singleton, List.get_eq_getElem]
erw [hs]
exact exchangeSign_symm (𝓕|>ₛφs[↑j]) (𝓕|>ₛ[singleton h]ᵘᶜ[↑(φsucΛ.sndFieldOfContract a)])
· simp only [not_lt, not_le] at hj2
simp only [hj2, true_and]
by_cases hi1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i
· simp [hi1]
· have hi1 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega
simp only [hi1, and_true, ↓reduceIte]
have hj2 : ¬ uncontractedListEmd (φsucΛ.sndFieldOfContract a) < j := by omega
simp only [hj2, ↓reduceIte, map_one]
rw [← ofFinset_union_disjoint]
simp only [instCommGroup, ofFinset_singleton, List.get_eq_getElem, hs]
erw [hs]
simp only [Fin.getElem_fin, mul_self, map_one]
simp only [Finset.disjoint_singleton_right, Finset.mem_singleton]
exact Fin.ne_of_lt h
lemma join_sign_singleton {φs : List 𝓕.States}
{i j : Fin φs.length} (h : i < j) (hs : (𝓕 |>ₛ φs[i]) = (𝓕 |>ₛ φs[j]))
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
(join (singleton h) φsucΛ).sign = (singleton h).sign * φsucΛ.sign := by
rw [join_singleton_sign_right]
rw [join_singleton_sign_left h φsucΛ]
rw [joinSignLeftExtra_eq_joinSignRightExtra h hs φsucΛ]
rw [← mul_assoc]
rw [mul_assoc _ _ (joinSignRightExtra h φsucΛ)]
have h1 : (joinSignRightExtra h φsucΛ * joinSignRightExtra h φsucΛ) = 1 := by
rw [← joinSignLeftExtra_eq_joinSignRightExtra h hs φsucΛ]
simp [joinSignLeftExtra]
simp only [instCommGroup, Fin.getElem_fin, h1, mul_one]
rw [sign]
rw [prod_join]
congr
· rw [singleton_prod]
simp
· funext a
simp
lemma exists_contraction_pair_of_card_ge_zero {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
(h : 0 < φsΛ.1.card) :
@ -1024,38 +645,6 @@ lemma exists_join_singleton_of_card_ge_zero {φs : List 𝓕.States} (φsΛ : Wi
simp only [subContraction, Finset.card_singleton, id_eq, eq_mpr_eq_cast] at h1
omega
lemma join_sign_induction {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (hc : φsΛ.GradingCompliant) :
(n : ) → (hn : φsΛ.1.card = n) →
(join φsΛ φsucΛ).sign = φsΛ.sign * φsucΛ.sign
| 0, hn => by
rw [@card_zero_iff_empty] at hn
subst hn
simp only [empty_join, sign_empty, one_mul]
apply sign_congr
simp
| Nat.succ n, hn => by
obtain ⟨i, j, hij, φsucΛ', rfl, h1, h2, h3⟩ :=
exists_join_singleton_of_card_ge_zero φsΛ (by simp [hn]) hc
rw [join_assoc]
rw [join_sign_singleton hij h1]
rw [join_sign_singleton hij h1]
have hn : φsucΛ'.1.card = n := by
omega
rw [join_sign_induction φsucΛ' (congr (by simp [join_uncontractedListGet]) φsucΛ) h2
n hn]
rw [mul_assoc]
simp only [mul_eq_mul_left_iff]
left
left
apply sign_congr
exact join_uncontractedListGet (singleton hij) φsucΛ'
lemma join_sign {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (hc : φsΛ.GradingCompliant) :
(join φsΛ φsucΛ).sign = φsΛ.sign * φsucΛ.sign := by
exact join_sign_induction φsΛ φsucΛ hc (φsΛ).1.card rfl
lemma join_not_gradingCompliant_of_left_not_gradingCompliant {φs : List 𝓕.States}
(φsΛ : WickContraction φs.length) (φsucΛ : WickContraction [φsΛ]ᵘᶜ.length)
(hc : ¬ φsΛ.GradingCompliant) : ¬ (join φsΛ φsucΛ).GradingCompliant := by
@ -1067,15 +656,5 @@ lemma join_not_gradingCompliant_of_left_not_gradingCompliant {φs : List 𝓕.St
join_sndFieldOfContract_joinLift]
exact ha2
lemma join_sign_timeContract {φs : List 𝓕.States} (φsΛ : WickContraction φs.length)
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) :
(join φsΛ φsucΛ).sign • (join φsΛ φsucΛ).timeContract.1 =
(φsΛ.sign • φsΛ.timeContract.1) * (φsucΛ.sign • φsucΛ.timeContract.1) := by
rw [join_timeContract]
by_cases h : φsΛ.GradingCompliant
· rw [join_sign _ _ h]
simp [smul_smul, mul_comm]
· rw [timeContract_of_not_gradingCompliant _ _ h]
simp
end WickContraction