/- Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.PerturbationTheory.WickContraction.TimeContract import HepLean.PerturbationTheory.WickContraction.Sign.InsertNone import HepLean.PerturbationTheory.WickContraction.Sign.InsertSome import HepLean.PerturbationTheory.FieldOpAlgebra.NormalOrder.WickContractions import HepLean.PerturbationTheory.FieldOpAlgebra.WickTerm import HepLean.Meta.Remark.Basic /-! # Wick's theorem This file contrains the time-dependent version of Wick's theorem for lists of fields containing both fermions and bosons. Wick's theorem is related to Isserlis' theorem in mathematics. -/ namespace FieldSpecification variable {𝓕 : FieldSpecification} open FieldOpFreeAlgebra open FieldOpAlgebra open HepLean.List open WickContraction open FieldStatistic /-! ## Wick terms -/ /-! ## Wick's theorem -/ lemma wicks_theorem_congr {φs φs' : List 𝓕.FieldOp} (h : φs = φs') : ∑ (φsΛ : WickContraction φs.length), φsΛ.wickTerm = ∑ (φs'Λ : WickContraction φs'.length), φs'Λ.wickTerm := by subst h rfl remark wicks_theorem_context := " In perturbation quantum field theory, Wick's theorem allows us to expand expectation values of time-ordered products of fields in terms of normal-orders and time contractions. The theorem is used to simplify the calculation of scattering amplitudes, and is the precurser to Feynman diagrams. There is are actually three different versions of Wick's theorem used. The static version, the time-dependent version, and the normal-ordered time-dependent version. HepLean contains a formalization of all three of these theorems in complete generality for mixtures of bosonic and fermionic fields. The statement of these theorems for bosons is simplier then when fermions are involved, since one does not have to worry about the minus-signs picked up on exchanging fields." /-- Wick's theorem states that for a list of fields `φs = φ₀…φₙ` `𝓣(φs) = ∑ φsΛ, (φsΛ.sign • φsΛ.timeContract) * 𝓝([φsΛ]ᵘᶜ)` where the sum is over all Wick contractions `φsΛ` of `φs`. The proof is via induction on `φs`. The base case `φs = []` is handled by `wicks_theorem_nil`. The inductive step works as follows: - The lemma `timeOrder_eq_maxTimeField_mul_finset` is used to write `𝓣(φ₀…φₙ)` as ` 𝓢(φᵢ,φ₀…φᵢ₋₁) • φᵢ * 𝓣(φ₀…φᵢ₋₁φᵢ₊₁φₙ)` where `φᵢ` is the maximal time field in `φ₀…φₙ`. - The induction hypothesis is used to expand `𝓣(φ₀…φᵢ₋₁φᵢ₊₁φₙ)` as a sum over Wick contractions of `φ₀…φᵢ₋₁φᵢ₊₁φₙ`. - Further the lemmas `wick_term_cons_eq_sum_wick_term` and `insertLift_sum` are used. -/ theorem wicks_theorem : (φs : List 𝓕.FieldOp) → 𝓣(ofFieldOpList φs) = ∑ (φsΛ : WickContraction φs.length), φsΛ.wickTerm | [] => by rw [timeOrder_ofFieldOpList_nil] simp only [map_one, List.length_nil, Algebra.smul_mul_assoc] rw [sum_WickContraction_nil] simp | φ :: φs => by have ih := wicks_theorem (eraseMaxTimeField φ φs) conv_lhs => rw [timeOrder_eq_maxTimeField_mul_finset, ih, Finset.mul_sum] have h1 : φ :: φs = (eraseMaxTimeField φ φs).insertIdx (maxTimeFieldPosFin φ φs) (maxTimeField φ φs) := by simp only [eraseMaxTimeField, insertionSortDropMinPos, List.length_cons, Nat.succ_eq_add_one, maxTimeField, insertionSortMin, List.get_eq_getElem] erw [insertIdx_eraseIdx_fin] conv_rhs => rw [wicks_theorem_congr h1] conv_rhs => rw [insertLift_sum] apply Finset.sum_congr rfl intro c _ rw [Algebra.smul_mul_assoc, mul_wickTerm_eq_sum (maxTimeField φ φs) (eraseMaxTimeField φ φs) (maxTimeFieldPosFin φ φs) c] trans (1 : ℂ) • ∑ k : Option { x // x ∈ c.uncontracted }, (c ↩Λ (maxTimeField φ φs) (maxTimeFieldPosFin φ φs) k).wickTerm swap · simp [uncontractedListGet] rw [smul_smul] simp only [instCommGroup.eq_1, exchangeSign_mul_self, Nat.succ_eq_add_one, Algebra.smul_mul_assoc, Fintype.sum_option, timeContract_insertAndContract_none, Finset.univ_eq_attach, smul_add, one_smul, uncontractedListGet] · exact fun k => timeOrder_maxTimeField _ _ k · exact fun k => lt_maxTimeFieldPosFin_not_timeOrder _ _ k termination_by φs => φs.length end FieldSpecification