/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.Basic import Mathlib.Algebra.Lie.Classical import Mathlib.LinearAlgebra.QuadraticForm.Basic /-! # Spacetime Metric This file introduces the metric on spacetime in the (+, -, -, -) signature. -/ noncomputable section namespace SpaceTime open Manifold open Matrix open Complex open ComplexConjugate open TensorProduct /-- The metric as a `4×4` real matrix. -/ def η : Matrix (Fin 4) (Fin 4) ℝ := Matrix.reindex finSumFinEquiv finSumFinEquiv $ LieAlgebra.Orthogonal.indefiniteDiagonal (Fin 1) (Fin 3) ℝ /-- The metric with lower indices. -/ notation "η_[" μ "]_[" ν "]" => η μ ν /-- The inverse of `η`. Used for notation. -/ def ηInv : Matrix (Fin 4) (Fin 4) ℝ := η /-- The metric with upper indices. -/ notation "η^[" μ "]^[" ν "]" => ηInv μ ν /-- A matrix with one lower and one upper index. -/ notation "["Λ"]^[" μ "]_[" ν "]" => (Λ : Matrix (Fin 4) (Fin 4) ℝ) μ ν /-- A matrix with both lower indices. -/ notation "["Λ"]_[" μ "]_[" ν "]" => ∑ ρ, η_[μ]_[ρ] * [Λ]^[ρ]_[ν] /-- `η` with $η^μ_ν$ indices. This is equivalent to the identity. This is used for notation. -/ def ηUpDown : Matrix (Fin 4) (Fin 4) ℝ := 1 /-- The metric with one lower and one upper index. -/ notation "η^[" μ "]_[" ν "]" => ηUpDown μ ν lemma η_block : η = Matrix.reindex finSumFinEquiv finSumFinEquiv ( Matrix.fromBlocks (1 : Matrix (Fin 1) (Fin 1) ℝ) 0 0 (-1 : Matrix (Fin 3) (Fin 3) ℝ)) := by rw [η] congr simp [LieAlgebra.Orthogonal.indefiniteDiagonal] rw [← fromBlocks_diagonal] refine fromBlocks_inj.mpr ?_ simp only [diagonal_one, true_and] funext i j rw [← diagonal_neg] rfl lemma η_reindex : (Matrix.reindex finSumFinEquiv finSumFinEquiv).symm η = LieAlgebra.Orthogonal.indefiniteDiagonal (Fin 1) (Fin 3) ℝ := (Equiv.symm_apply_eq (reindex finSumFinEquiv finSumFinEquiv)).mpr rfl lemma η_explicit : η = !![(1 : ℝ), 0, 0, 0; 0, -1, 0, 0; 0, 0, -1, 0; 0, 0, 0, -1] := by rw [η_block] apply Matrix.ext intro i j fin_cases i <;> fin_cases j <;> simp_all only [Fin.zero_eta, reindex_apply, submatrix_apply] any_goals rfl all_goals simp [finSumFinEquiv, Fin.addCases, η, vecHead, vecTail] any_goals rfl all_goals split all_goals simp all_goals rfl @[simp] lemma η_off_diagonal {μ ν : Fin 4} (h : μ ≠ ν) : η μ ν = 0 := by fin_cases μ <;> fin_cases ν <;> simp_all [η_explicit, Fin.mk_one, Fin.mk_one, vecHead, vecTail] lemma η_symmetric (μ ν : Fin 4) : η μ ν = η ν μ := by by_cases h : μ = ν rw [h] rw [η_off_diagonal h] exact Eq.symm (η_off_diagonal fun a => h (id (Eq.symm a))) @[simp] lemma η_transpose : η.transpose = η := by funext μ ν rw [transpose_apply, η_symmetric] @[simp] lemma det_η : η.det = - 1 := by simp [η_explicit, det_succ_row_zero, Fin.sum_univ_succ] @[simp] lemma η_sq : η * η = 1 := by funext μ ν fin_cases μ <;> fin_cases ν <;> simp [η_explicit, vecHead, vecTail] lemma η_diag_mul_self (μ : Fin 4) : η μ μ * η μ μ = 1 := by fin_cases μ <;> simp [η_explicit] lemma η_mulVec (x : SpaceTime) : η *ᵥ x = ![x 0, -x 1, -x 2, -x 3] := by rw [explicit x, η_explicit] funext i fin_cases i <;> simp [vecHead, vecTail] lemma η_as_diagonal : η = diagonal ![1, -1, -1, -1] := by rw [η_explicit] apply Matrix.ext intro μ ν fin_cases μ <;> fin_cases ν <;> rfl lemma η_mul (Λ : Matrix (Fin 4) (Fin 4) ℝ) (μ ρ : Fin 4) : [η * Λ]^[μ]_[ρ] = [η]^[μ]_[μ] * [Λ]^[μ]_[ρ] := by rw [η_as_diagonal, @diagonal_mul, diagonal_apply_eq ![1, -1, -1, -1] μ] lemma mul_η (Λ : Matrix (Fin 4) (Fin 4) ℝ) (μ ρ : Fin 4) : [Λ * η]^[μ]_[ρ] = [Λ]^[μ]_[ρ] * [η]^[ρ]_[ρ] := by rw [η_as_diagonal, @mul_diagonal, diagonal_apply_eq ![1, -1, -1, -1] ρ] lemma η_mul_self (μ ν : Fin 4) : η^[ν]_[μ] * η_[ν]_[ν] = η_[μ]_[ν] := by fin_cases μ <;> fin_cases ν <;> simp [ηUpDown] lemma η_contract_self (μ ν : Fin 4) : ∑ x, (η^[x]_[μ] * η_[x]_[ν]) = η_[μ]_[ν] := by rw [Fin.sum_univ_four] fin_cases μ <;> fin_cases ν <;> simp [ηUpDown] lemma η_contract_self' (μ ν : Fin 4) : ∑ x, (η^[x]_[μ] * η_[ν]_[x]) = η_[ν]_[μ] := by rw [Fin.sum_univ_four] fin_cases μ <;> fin_cases ν <;> simp [ηUpDown] /-- Given a point in spaceTime `x` the linear map `y → x ⬝ᵥ (η *ᵥ y)`. -/ @[simps!] def linearMapForSpaceTime (x : SpaceTime) : SpaceTime →ₗ[ℝ] ℝ where toFun y := x ⬝ᵥ (η *ᵥ y) map_add' y z := by simp only rw [mulVec_add, dotProduct_add] map_smul' c y := by simp only [RingHom.id_apply, smul_eq_mul] rw [mulVec_smul, dotProduct_smul] rfl /-- The metric as a bilinear map from `spaceTime` to `ℝ`. -/ def ηLin : LinearMap.BilinForm ℝ SpaceTime where toFun x := linearMapForSpaceTime x map_add' x y := by apply LinearMap.ext intro z simp only [linearMapForSpaceTime_apply, LinearMap.add_apply] rw [add_dotProduct] map_smul' c x := by apply LinearMap.ext intro z simp only [linearMapForSpaceTime_apply, RingHom.id_apply, LinearMap.smul_apply, smul_eq_mul] rw [smul_dotProduct] rfl lemma ηLin_expand (x y : SpaceTime) : ηLin x y = x 0 * y 0 - x 1 * y 1 - x 2 * y 2 - x 3 * y 3 := by rw [ηLin] simp only [LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply, Fin.isValue] erw [η_mulVec] nth_rewrite 1 [explicit x] simp only [dotProduct, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.sum_univ_four, cons_val_zero, cons_val_one, head_cons, mul_neg, cons_val_two, tail_cons, cons_val_three] ring lemma ηLin_expand_self (x : SpaceTime) : ηLin x x = x 0 ^ 2 - ‖x.space‖ ^ 2 := by rw [← @real_inner_self_eq_norm_sq, @PiLp.inner_apply, Fin.sum_univ_three, ηLin_expand] noncomm_ring lemma time_elm_sq_of_ηLin (x : SpaceTime) : x 0 ^ 2 = ηLin x x + ‖x.space‖ ^ 2 := by rw [ηLin_expand_self] ring lemma ηLin_leq_time_sq (x : SpaceTime) : ηLin x x ≤ x 0 ^ 2 := by rw [time_elm_sq_of_ηLin] exact (le_add_iff_nonneg_right _).mpr $ sq_nonneg ‖x.space‖ lemma ηLin_space_inner_product (x y : SpaceTime) : ηLin x y = x 0 * y 0 - ⟪x.space, y.space⟫_ℝ := by rw [ηLin_expand, @PiLp.inner_apply, Fin.sum_univ_three] noncomm_ring lemma ηLin_ge_abs_inner_product (x y : SpaceTime) : x 0 * y 0 - ‖⟪x.space, y.space⟫_ℝ‖ ≤ (ηLin x y) := by rw [ηLin_space_inner_product, sub_le_sub_iff_left] exact Real.le_norm_self ⟪x.space, y.space⟫_ℝ lemma ηLin_ge_sub_norm (x y : SpaceTime) : x 0 * y 0 - ‖x.space‖ * ‖y.space‖ ≤ (ηLin x y) := by apply le_trans ?_ (ηLin_ge_abs_inner_product x y) rw [sub_le_sub_iff_left] exact norm_inner_le_norm x.space y.space lemma ηLin_symm (x y : SpaceTime) : ηLin x y = ηLin y x := by rw [ηLin_expand, ηLin_expand] ring lemma ηLin_stdBasis_apply (μ : Fin 4) (x : SpaceTime) : ηLin (stdBasis μ) x = η μ μ * x μ := by rw [ηLin_expand] fin_cases μ <;> simp [stdBasis_0, stdBasis_1, stdBasis_2, stdBasis_3, η_explicit] lemma ηLin_η_stdBasis (μ ν : Fin 4) : ηLin (stdBasis μ) (stdBasis ν) = η μ ν := by rw [ηLin_stdBasis_apply] by_cases h : μ = ν · rw [stdBasis_apply] subst h simp · rw [stdBasis_not_eq, η_off_diagonal h] exact CommMonoidWithZero.mul_zero η_[μ]_[μ] exact fun a ↦ h (id a.symm) set_option maxHeartbeats 0 lemma ηLin_mulVec_left (x y : SpaceTime) (Λ : Matrix (Fin 4) (Fin 4) ℝ) : ηLin (Λ *ᵥ x) y = ηLin x ((η * Λᵀ * η) *ᵥ y) := by simp [ηLin, LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply, mulVec_mulVec, (vecMul_transpose Λ x).symm, ← dotProduct_mulVec, mulVec_mulVec, ← mul_assoc, ← mul_assoc, η_sq, one_mul] lemma ηLin_mulVec_right (x y : SpaceTime) (Λ : Matrix (Fin 4) (Fin 4) ℝ) : ηLin x (Λ *ᵥ y) = ηLin ((η * Λᵀ * η) *ᵥ x) y := by rw [ηLin_symm, ηLin_symm ((η * Λᵀ * η) *ᵥ x) _ ] exact ηLin_mulVec_left y x Λ lemma ηLin_matrix_stdBasis (μ ν : Fin 4) (Λ : Matrix (Fin 4) (Fin 4) ℝ) : ηLin (stdBasis ν) (Λ *ᵥ stdBasis μ) = η ν ν * Λ ν μ := by rw [ηLin_stdBasis_apply, stdBasis_mulVec] lemma ηLin_matrix_stdBasis' (μ ν : Fin 4) (Λ : Matrix (Fin 4) (Fin 4) ℝ) : Λ ν μ = η ν ν * ηLin (stdBasis ν) (Λ *ᵥ stdBasis μ) := by rw [ηLin_matrix_stdBasis, ← mul_assoc, η_diag_mul_self, one_mul] lemma ηLin_matrix_eq_identity_iff (Λ : Matrix (Fin 4) (Fin 4) ℝ) : Λ = 1 ↔ ∀ (x y : SpaceTime), ηLin x y = ηLin x (Λ *ᵥ y) := by apply Iff.intro · intro h subst h simp only [ηLin, one_mulVec, implies_true] · intro h funext μ ν have h1 := h (stdBasis μ) (stdBasis ν) rw [ηLin_matrix_stdBasis, ηLin_η_stdBasis] at h1 fin_cases μ <;> fin_cases ν <;> simp_all [η_explicit, Fin.mk_one, Fin.mk_one, vecHead, vecTail] /-- The metric as a quadratic form on `spaceTime`. -/ def quadraticForm : QuadraticForm ℝ SpaceTime := ηLin.toQuadraticForm end SpaceTime end