/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.TensorSpecies.UnitTensor /-! ## Contraction of specific tensor types -/ open IndexNotation open CategoryTheory open MonoidalCategory open OverColor open HepLean.Fin open TensorProduct noncomputable section namespace TensorSpecies open TensorTree variable {S : TensorSpecies} /-- Expands the inner contraction of two 2-tensors which are tprods in terms of basic categorical constructions and fields of the tensor species. -/ lemma contr_two_two_inner_tprod (c : S.C) (x : S.F.obj (OverColor.mk ![c, c])) (fx : (i : (𝟭 Type).obj (OverColor.mk ![c, c]).left) → CoeSort.coe (S.FD.obj { as := (OverColor.mk ![c, c]).hom i })) (y : S.F.obj (OverColor.mk ![(S.τ c), (S.τ c)])) (fy : (i : (𝟭 Type).obj (OverColor.mk ![S.τ c, S.τ c]).left) → CoeSort.coe (S.FD.obj { as := (OverColor.mk ![S.τ c, S.τ c]).hom i })) (hx : x = PiTensorProduct.tprod S.k fx) (hy : y = PiTensorProduct.tprod S.k fy) : {x | μ ν ⊗ y| ν ρ}ᵀ.tensor = (S.F.map (OverColor.mkIso (by funext x fin_cases x <;> rfl)).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom (((S.FD.obj (Discrete.mk c)) ◁ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom).hom (((S.FD.obj (Discrete.mk c)) ◁ ((S.contr.app (Discrete.mk c)) ▷ (S.FD.obj (Discrete.mk (S.τ c))))).hom (((S.FD.obj (Discrete.mk c)) ◁ (α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv).hom ((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom (((OverColor.Discrete.pairIsoSep S.FD).inv.hom x ⊗ₜ (OverColor.Discrete.pairIsoSep S.FD).inv.hom y))))))) := by subst hx subst hy rw [Discrete.pairIsoSep_inv_tprod S.FD fx, Discrete.pairIsoSep_inv_tprod S.FD fy] change _ = (S.F.map (OverColor.mkIso _).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom ((fx (0 : Fin 2) ⊗ₜ[S.k] (λ_ (S.FD.obj { as := S.τ c }).V).hom ((S.contr.app { as := c }).hom (fx (1 : Fin 2) ⊗ₜ[S.k] fy (0 : Fin 2)) ⊗ₜ[S.k] fy (1 : Fin 2))))) simp only [F_def, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V, Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, ModuleCat.MonoidalCategory.leftUnitor_hom_apply, tmul_smul, map_smul] conv_lhs => simp only [Nat.reduceAdd, Fin.isValue, contr_tensor, prod_tensor, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, tensorNode_tensor, Action.instMonoidalCategory_tensorUnit_V, Action.instMonoidalCategory_whiskerLeft_hom, Action.instMonoidalCategory_leftUnitor_hom_hom, Monoidal.tensorUnit_obj, Action.instMonoidalCategory_whiskerRight_hom, Action.instMonoidalCategory_associator_inv_hom, Action.instMonoidalCategory_associator_hom_hom, F_def] erw [OverColor.lift.μ_tmul_tprod S.FD] rw (config := { transparency := .instances }) [OverColor.lift.map_tprod] rw (config := { transparency := .instances }) [contrMap_tprod] congr 1 /- The contraction. -/ · congr · simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Fin.isValue, Function.comp_apply, Action.FunctorCategoryEquivalence.functor_obj_obj, mk_hom, equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.id_obj, instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply] rfl · simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Fin.isValue, Function.comp_apply, Functor.comp_obj, Discrete.functor_obj_eq_as, Action.FunctorCategoryEquivalence.functor_obj_obj, Nat.reduceAdd, eqToHom_refl, Discrete.functor_map_id, Action.id_hom, mk_hom, equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Iso.refl_inv, Functor.id_obj, instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply] rfl /- The tensor. -/ · rw (config := { transparency := .instances }) [Discrete.pairIsoSep_tmul, OverColor.lift.map_tprod] apply congrArg funext k match k with | (0 : Fin 2) => rfl | (1 : Fin 2) => rfl /-- Expands the inner contraction of two 2-tensors in terms of basic categorical constructions and fields of the tensor species. -/ lemma contr_two_two_inner (c : S.C) (x : S.F.obj (OverColor.mk ![c, c])) (y : S.F.obj (OverColor.mk ![(S.τ c), (S.τ c)])) : {x | μ ν ⊗ y| ν ρ}ᵀ.tensor = (S.F.map (OverColor.mkIso (by funext x fin_cases x <;> rfl)).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom (((S.FD.obj (Discrete.mk c)) ◁ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom).hom (((S.FD.obj (Discrete.mk c)) ◁ ((S.contr.app (Discrete.mk c)) ▷ (S.FD.obj (Discrete.mk (S.τ c))))).hom (((S.FD.obj (Discrete.mk c)) ◁ (α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv).hom ((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom (((OverColor.Discrete.pairIsoSep S.FD).inv.hom x ⊗ₜ (OverColor.Discrete.pairIsoSep S.FD).inv.hom y))))))) := by simp only [Nat.reduceAdd, Fin.isValue, contr_tensor, prod_tensor, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, tensorNode_tensor, Action.instMonoidalCategory_tensorUnit_V, Action.instMonoidalCategory_whiskerLeft_hom, Action.instMonoidalCategory_leftUnitor_hom_hom, Monoidal.tensorUnit_obj, Action.instMonoidalCategory_whiskerRight_hom, Action.instMonoidalCategory_associator_inv_hom, Action.instMonoidalCategory_associator_hom_hom] refine PiTensorProduct.induction_on' x ?_ (by intro a b hx hy simp only [Fin.isValue, Nat.reduceAdd, Functor.id_obj, mk_hom, add_tmul, map_add, hx, hy]) intro rx fx refine PiTensorProduct.induction_on' y ?_ (by intro a b hx hy simp_all only [Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, mk_hom, PiTensorProduct.tprodCoeff_eq_smul_tprod, map_smul, map_add, tmul_add]) intro ry fy simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, LinearMapClass.map_smul] apply congrArg simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul] apply congrArg simpa using contr_two_two_inner_tprod c (PiTensorProduct.tprod S.k fx) fx (PiTensorProduct.tprod S.k fy) fy end TensorSpecies end