/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.LorentzTensor.Real.Basic import HepLean.SpaceTime.LorentzTensor.Real.LorentzAction /-! # Multiplication of Real Lorentz Tensors along an index We define the multiplication of two singularly marked Lorentz tensors along the marked index. This is equivalent to contracting two Lorentz tensors. We prove various results about this multiplication. -/ /-! TODO: Generalize to contracting any marked index of a marked tensor. -/ /-! TODO: Set up a good notation for the multiplication. -/ namespace RealLorentzTensor variable {d : ℕ} {X Y : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y] (T : RealLorentzTensor d X) (c : X → Colors) (Λ Λ' : LorentzGroup d) {μ : Colors} open Marked /-- The contraction of the marked indices of two tensors each with one marked index, which is dual to the others. The contraction is done via `φ^μ ψ_μ = φ^0 ψ_0 + φ^1 ψ_1 + ...`. -/ @[simps!] def mul {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 0)) : RealLorentzTensor d (X ⊕ Y) where color := Sum.elim T.unmarkedColor S.unmarkedColor coord := fun i => ∑ x, T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, oneMarkedIndexValue x)) * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, oneMarkedIndexValue $ colorsIndexDualCast h x)) /-! ## Expressions for multiplication -/ /-! TODO: Where appropriate write these expresions in terms of `indexValueDualIso`. -/ lemma mul_colorsIndex_right {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 0)) : (mul T S h).coord = fun i => ∑ x, T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, oneMarkedIndexValue $ colorsIndexDualCast (color_eq_dual_symm h) x)) * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, oneMarkedIndexValue x)) := by funext i rw [← Equiv.sum_comp (colorsIndexDualCast h)] apply Finset.sum_congr rfl (fun x _ => ?_) congr rw [← colorsIndexDualCast_symm] exact (Equiv.apply_eq_iff_eq_symm_apply (colorsIndexDualCast h)).mp rfl lemma mul_indexValue_left {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 0)) : (mul T S h).coord = fun i => ∑ j, T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j)) * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, (oneMarkedIndexValue $ (colorsIndexDualCast h) $ oneMarkedIndexValue.symm j))) := by funext i rw [← Equiv.sum_comp (oneMarkedIndexValue)] rfl lemma mul_indexValue_right {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 0)) : (mul T S h).coord = fun i => ∑ j, T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, oneMarkedIndexValue $ (colorsIndexDualCast h).symm $ oneMarkedIndexValue.symm j)) * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, j)) := by funext i rw [mul_colorsIndex_right] rw [← Equiv.sum_comp (oneMarkedIndexValue)] apply Finset.sum_congr rfl (fun x _ => ?_) congr exact Eq.symm (colorsIndexDualCast_symm h) /-! ## Properties of multiplication -/ /-- Multiplication is well behaved with regard to swapping tensors. -/ lemma mul_symm {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 0)) : mapIso d (Equiv.sumComm X Y) (mul T S h) = mul S T (color_eq_dual_symm h) := by refine ext ?_ ?_ · funext a cases a with | inl _ => rfl | inr _ => rfl · funext i rw [mul_colorsIndex_right] refine Fintype.sum_congr _ _ (fun x => ?_) rw [mul_comm] rfl /-- Multiplication commutes with `mapIso`. -/ lemma mul_mapIso {X Y Z : Type} (T : Marked d X 1) (S : Marked d Y 1) (f : X ≃ W) (g : Y ≃ Z) (h : T.markedColor 0 = τ (S.markedColor 0)) : mapIso d (Equiv.sumCongr f g) (mul T S h) = mul (mapIso d (Equiv.sumCongr f (Equiv.refl _)) T) (mapIso d (Equiv.sumCongr g (Equiv.refl _)) S) h := by refine ext ?_ ?_ · funext a cases a with | inl _ => rfl | inr _ => rfl · funext i rw [mapIso_apply_coord, mul_coord, mul_coord] refine Fintype.sum_congr _ _ (fun x => ?_) rw [mapIso_apply_coord, mapIso_apply_coord] refine Mathlib.Tactic.Ring.mul_congr ?_ ?_ rfl · apply congrArg simp only [IndexValue] exact (Equiv.symm_apply_eq splitIndexValue).mpr rfl · apply congrArg exact (Equiv.symm_apply_eq splitIndexValue).mpr rfl /-! ## Lorentz action and multiplication. -/ /-- The marked Lorentz Action leaves multiplication invariant. -/ lemma mul_markedLorentzAction (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 1)) : mul (Λ •ₘ T) (Λ •ₘ S) h = mul T S h := by refine ext rfl ?_ funext i change ∑ x, (∑ j, toTensorRepMat Λ (oneMarkedIndexValue x) j * T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j))) * (∑ k, toTensorRepMat Λ (oneMarkedIndexValue $ colorsIndexDualCast h x) k * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k))) = _ trans ∑ x, ∑ j, ∑ k, (toTensorRepMat Λ (oneMarkedIndexValue $ colorsIndexDualCast h x) k * toTensorRepMat Λ (oneMarkedIndexValue x) j) * T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j)) * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k)) apply Finset.sum_congr rfl (fun x _ => ?_) rw [Finset.sum_mul_sum ] apply Finset.sum_congr rfl (fun j _ => ?_) apply Finset.sum_congr rfl (fun k _ => ?_) ring rw [Finset.sum_comm] trans ∑ j, ∑ k, ∑ x, (toTensorRepMat Λ (oneMarkedIndexValue $ colorsIndexDualCast h x) k * toTensorRepMat Λ (oneMarkedIndexValue x) j) * T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j)) * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k)) apply Finset.sum_congr rfl (fun j _ => ?_) rw [Finset.sum_comm] trans ∑ j, ∑ k, (toTensorRepMat 1 (oneMarkedIndexValue $ (colorsIndexDualCast h).symm $ oneMarkedIndexValue.symm k) j) * T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j)) * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k)) apply Finset.sum_congr rfl (fun j _ => Finset.sum_congr rfl (fun k _ => ?_)) rw [← Finset.sum_mul, ← Finset.sum_mul] erw [toTensorRepMap_sum_dual] rfl rw [Finset.sum_comm] trans ∑ k, T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, (oneMarkedIndexValue $ (colorsIndexDualCast h).symm $ oneMarkedIndexValue.symm k)))* S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k)) apply Finset.sum_congr rfl (fun k _ => ?_) rw [← Finset.sum_mul, ← toTensorRepMat_one_coord_sum T] rw [← Equiv.sum_comp (oneMarkedIndexValue)] erw [← Equiv.sum_comp (colorsIndexDualCast h)] simp rfl /-- The unmarked Lorentz Action commutes with multiplication. -/ lemma mul_unmarkedLorentzAction (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 1)) : mul (Λ •ᵤₘ T) (Λ •ᵤₘ S) h = Λ • mul T S h := by refine ext rfl ?_ funext i change ∑ x, (∑ j, toTensorRepMat Λ (indexValueSumEquiv i).1 j * T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x)))* ∑ k, toTensorRepMat Λ (indexValueSumEquiv i).2 k * S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x)) = _ trans ∑ x, ∑ j, ∑ k, (toTensorRepMat Λ (indexValueSumEquiv i).1 j * T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x)))* toTensorRepMat Λ (indexValueSumEquiv i).2 k * S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x)) apply Finset.sum_congr rfl (fun x _ => ?_) rw [Finset.sum_mul_sum ] apply Finset.sum_congr rfl (fun j _ => ?_) apply Finset.sum_congr rfl (fun k _ => ?_) ring rw [Finset.sum_comm] trans ∑ j, ∑ k, ∑ x, (toTensorRepMat Λ (indexValueSumEquiv i).1 j * T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x)))* toTensorRepMat Λ (indexValueSumEquiv i).2 k * S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x)) apply Finset.sum_congr rfl (fun j _ => ?_) rw [Finset.sum_comm] trans ∑ j, ∑ k, ((toTensorRepMat Λ (indexValueSumEquiv i).1 j) * toTensorRepMat Λ (indexValueSumEquiv i).2 k) * ∑ x, (T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x))) * S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x)) apply Finset.sum_congr rfl (fun j _ => Finset.sum_congr rfl (fun k _ => ?_)) rw [Finset.mul_sum] apply Finset.sum_congr rfl (fun x _ => ?_) ring trans ∑ j, ∑ k, toTensorRepMat Λ i (indexValueSumEquiv.symm (j, k)) * ∑ x, (T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x))) * S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x)) apply Finset.sum_congr rfl (fun j _ => Finset.sum_congr rfl (fun k _ => ?_)) rw [toTensorRepMat_of_indexValueSumEquiv'] congr simp only [IndexValue, Finset.mem_univ, Prod.mk.eta, Equiv.symm_apply_apply, mul_color] trans ∑ p, toTensorRepMat Λ i p * ∑ x, (T.coord (splitIndexValue.symm ((indexValueSumEquiv p).1, oneMarkedIndexValue x))) * S.coord (splitIndexValue.symm ((indexValueSumEquiv p).2, oneMarkedIndexValue $ colorsIndexDualCast h x)) erw [← Equiv.sum_comp indexValueSumEquiv.symm] rw [Fintype.sum_prod_type] rfl rfl /-- The Lorentz action commutes with multiplication. -/ lemma mul_lorentzAction (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 1)) : mul (Λ • T) (Λ • S) h = Λ • mul T S h := by simp only [← marked_unmarked_action_eq_action] rw [mul_markedLorentzAction, mul_unmarkedLorentzAction] end RealLorentzTensor