/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.LorentzTensor.MulActionTensor /-! # Contraction of indices We define a number of ways to contract indices of tensors: - `contrDualLeft`: Contracts vectors on the left as: `𝓣.ColorModule ν ⊗[R] 𝓣.ColorModule (𝓣.τ ν) ⊗[R] 𝓣.ColorModule η →ₗ[R] 𝓣.ColorModule η` - `contrDualMid`: Contracts vectors in the middle as: `(𝓣.ColorModule μ ⊗[R] 𝓣.ColorModule ν) ⊗[R] (𝓣.ColorModule (𝓣.τ ν) ⊗[R] 𝓣.ColorModule η) →ₗ[R]` `𝓣.ColorModule μ ⊗[R] 𝓣.ColorModule η` - `contrAll'`: Contracts all indices of manifestly tensors with manifestly dual colors as: `𝓣.Tensor cX ⊗[R] 𝓣.Tensor (𝓣.τ ∘ cX) →ₗ[R] R` - `contrAll`: Contracts all indices of tensors with dual colors as: `𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY →ₗ[R] R` - `contrAllLeft`: Contracts all indices of tensors on the left as: `𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY ⊗[R] 𝓣.Tensor cZ →ₗ[R] 𝓣.Tensor cZ` - `contrElim`: Contracting indices of tensors indexed by `Sum.elim _ _` as: `𝓣.Tensor (Sum.elim cW cX) ⊗[R] 𝓣.Tensor (Sum.elim cY cZ) →ₗ[R] 𝓣.Tensor (Sum.elim cW cZ)` -/ /-! TODO: Define contraction based on an equivalence `(C ⊗ C) ⊗ P ≃ X` satisfying ... . -/ noncomputable section open TensorProduct open MulActionTensor variable {R : Type} [CommSemiring R] namespace TensorColor variable {d : ℕ} {X X' Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y] [Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W] variable {d : ℕ} {X Y Y' Z W C P : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y] [Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W] [Fintype C] [DecidableEq C] [Fintype P] [DecidableEq P] namespace ColorMap variable {𝓒 : TensorColor} [Fintype 𝓒.Color] [DecidableEq 𝓒.Color] variable (cX : ColorMap 𝓒 X) (cY : ColorMap 𝓒 Y) (cZ : ColorMap 𝓒 Z) /-- Given an equivalence `e` of types the condition that the color map `cX` is the dual to `cY` up to this equivalence. -/ def ContrAll (e : X ≃ Y) (cX : ColorMap 𝓒 X) (cY : ColorMap 𝓒 Y) : Prop := cX = 𝓒.τ ∘ cY ∘ e namespace ContrAll variable {e : X ≃ Y} {e' : Y ≃ Z} {cX : ColorMap 𝓒 X} {cY : ColorMap 𝓒 Y} {cZ : ColorMap 𝓒 Z} variable {cX' : ColorMap 𝓒 X'} {cY' : ColorMap 𝓒 Y'} lemma toMapIso (h : cX.ContrAll e cY) : cX.MapIso e cY.dual := by subst h rfl lemma symm (h : cX.ContrAll e cY) : cY.ContrAll e.symm cX := by subst h funext x simp only [Function.comp_apply, Equiv.apply_symm_apply] exact (𝓒.τ_involutive (cY x)).symm lemma trans_mapIso {e : X ≃ Y} {e' : Z ≃ Y} (h : cX.ContrAll e cY) (h' : cZ.MapIso e' cY) : cX.ContrAll (e.trans e'.symm) cZ := by subst h h' funext x simp only [Function.comp_apply, Equiv.coe_trans, Equiv.apply_symm_apply] lemma mapIso_trans {e : X ≃ Y} {e' : Z ≃ X} (h : cX.ContrAll e cY) (h' : cZ.MapIso e' cX) : cZ.ContrAll (e'.trans e) cY := by subst h h' funext x simp only [Function.comp_apply, Equiv.coe_trans, Equiv.apply_symm_apply] end ContrAll /-- Given an equivalence `(C ⊕ C) ⊕ P ≃ X` the restriction of a color map `cX` on to `P`. -/ def contr (e : (C ⊕ C) ⊕ P ≃ X) (cX : ColorMap 𝓒 X) : ColorMap 𝓒 P := cX ∘ e ∘ Sum.inr /-- Given an equivalence `(C ⊕ C) ⊕ P ≃ X` the restriction of a color map `cX` on `X` to the first `C`. -/ def contrLeft (e : (C ⊕ C) ⊕ P ≃ X) (cX : ColorMap 𝓒 X) : ColorMap 𝓒 C := cX ∘ e ∘ Sum.inl ∘ Sum.inl /-- Given an equivalence `(C ⊕ C) ⊕ P ≃ X` the restriction of a color map `cX` on `X` to the second `C`. -/ def contrRight (e : (C ⊕ C) ⊕ P ≃ X) (cX : ColorMap 𝓒 X) : ColorMap 𝓒 C := cX ∘ e ∘ Sum.inl ∘ Sum.inr /-- Given an equivalence `(C ⊕ C) ⊕ P ≃ X` the condition on `cX` so that we contract the indices of the `C`'s under this equivalence. -/ def ContrCond (e : (C ⊕ C) ⊕ P ≃ X) (cX : ColorMap 𝓒 X) : Prop := cX ∘ e ∘ Sum.inl ∘ Sum.inl = 𝓒.τ ∘ cX ∘ e ∘ Sum.inl ∘ Sum.inr namespace ContrCond variable {e : (C ⊕ C) ⊕ P ≃ X} {e' : Y ≃ Z} {cX : ColorMap 𝓒 X} {cY : ColorMap 𝓒 Y} {cZ : ColorMap 𝓒 Z} variable {cX' : ColorMap 𝓒 X'} {cY' : ColorMap 𝓒 Y'} lemma to_contrAll (h : cX.ContrCond e) : (cX.contrLeft e).ContrAll (Equiv.refl _) (cX.contrRight e) := h end ContrCond end ColorMap end TensorColor namespace TensorStructure variable (𝓣 : TensorStructure R) variable {d : ℕ} {X Y Y' Z W C P : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y] [Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W] [Fintype C] [DecidableEq C] [Fintype P] [DecidableEq P] {cX cX2 : 𝓣.ColorMap X} {cY : 𝓣.ColorMap Y} {cZ : 𝓣.ColorMap Z} {cW : 𝓣.ColorMap W} {cY' : 𝓣.ColorMap Y'} {μ ν: 𝓣.Color} variable {G H : Type} [Group G] [Group H] [MulActionTensor G 𝓣] local infixl:101 " • " => 𝓣.rep /-! # Contractions of vectors -/ /-- The contraction of a vector in `𝓣.ColorModule ν` with a vector in `𝓣.ColorModule (𝓣.τ ν) ⊗[R] 𝓣.ColorModule η` to form a vector in `𝓣.ColorModule η`. -/ def contrDualLeft {ν η : 𝓣.Color} : 𝓣.ColorModule ν ⊗[R] 𝓣.ColorModule (𝓣.τ ν) ⊗[R] 𝓣.ColorModule η →ₗ[R] 𝓣.ColorModule η := contrLeftAux (𝓣.contrDual ν) /-- The contraction of a vector in `𝓣.ColorModule μ ⊗[R] 𝓣.ColorModule ν` with a vector in `𝓣.ColorModule (𝓣.τ ν) ⊗[R] 𝓣.ColorModule η` to form a vector in `𝓣.ColorModule μ ⊗[R] 𝓣.ColorModule η`. -/ def contrDualMid {μ ν η : 𝓣.Color} : (𝓣.ColorModule μ ⊗[R] 𝓣.ColorModule ν) ⊗[R] (𝓣.ColorModule (𝓣.τ ν) ⊗[R] 𝓣.ColorModule η) →ₗ[R] 𝓣.ColorModule μ ⊗[R] 𝓣.ColorModule η := contrMidAux (𝓣.contrDual ν) /-- A linear map taking tensors mapped with the same index set to the product of paired tensors. -/ def pairProd : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cX2 →ₗ[R] ⨂[R] x, 𝓣.ColorModule (cX x) ⊗[R] 𝓣.ColorModule (cX2 x) := TensorProduct.lift ( PiTensorProduct.map₂ (fun x => TensorProduct.mk R (𝓣.ColorModule (cX x)) (𝓣.ColorModule (cX2 x)))) lemma pairProd_tmul_tprod_tprod (fx : (i : X) → 𝓣.ColorModule (cX i)) (fx2 : (i : X) → 𝓣.ColorModule (cX2 i)) : 𝓣.pairProd (PiTensorProduct.tprod R fx ⊗ₜ[R] PiTensorProduct.tprod R fx2) = PiTensorProduct.tprod R (fun x => fx x ⊗ₜ[R] fx2 x) := by simp [pairProd] erw [PiTensorProduct.map₂_tprod_tprod] rfl lemma mkPiAlgebra_equiv (e : X ≃ Y) : (PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R)) = (PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R Y R)) ∘ₗ (PiTensorProduct.reindex R _ e).toLinearMap := by apply PiTensorProduct.ext apply MultilinearMap.ext intro x simp only [LinearMap.compMultilinearMap_apply, PiTensorProduct.lift.tprod, MultilinearMap.mkPiAlgebra_apply, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, PiTensorProduct.reindex_tprod, Equiv.prod_comp] /-- Given a tensor in `𝓣.Tensor cX` and a tensor in `𝓣.Tensor (𝓣.τ ∘ cX)`, the element of `R` formed by contracting all of their indices. -/ def contrAll' : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor (𝓣.τ ∘ cX) →ₗ[R] R := (PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R)) ∘ₗ (PiTensorProduct.map (fun x => 𝓣.contrDual (cX x))) ∘ₗ (𝓣.pairProd) lemma contrAll'_tmul_tprod_tprod (fx : (i : X) → 𝓣.ColorModule (cX i)) (fy : (i : X) → 𝓣.ColorModule (𝓣.τ (cX i))) : 𝓣.contrAll' (PiTensorProduct.tprod R fx ⊗ₜ[R] PiTensorProduct.tprod R fy) = (PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R)) (PiTensorProduct.tprod R (fun x => 𝓣.contrDual (cX x) (fx x ⊗ₜ[R] fy x))) := by simp only [contrAll', Function.comp_apply, LinearMap.coe_comp, PiTensorProduct.lift.tprod, MultilinearMap.mkPiAlgebra_apply] erw [pairProd_tmul_tprod_tprod] simp only [Function.comp_apply, PiTensorProduct.map_tprod, PiTensorProduct.lift.tprod, MultilinearMap.mkPiAlgebra_apply] @[simp] lemma contrAll'_isEmpty_tmul [IsEmpty X] (x : 𝓣.Tensor cX) (y : 𝓣.Tensor (𝓣.τ ∘ cX)) : 𝓣.contrAll' (x ⊗ₜ y) = 𝓣.isEmptyEquiv x * 𝓣.isEmptyEquiv y := by refine PiTensorProduct.induction_on' x ?_ (by intro a b hx hy simp [map_add, add_tmul, add_mul, hx, hy]) intro rx fx refine PiTensorProduct.induction_on' y ?_ (by intro a b hx hy simp at hx hy simp [map_add, tmul_add, mul_add, hx, hy]) intro ry fy simp [smul_tmul] ring_nf rw [mul_assoc, mul_assoc] apply congrArg apply congrArg simp [contrAll'] erw [pairProd_tmul_tprod_tprod] simp only [Function.comp_apply, PiTensorProduct.map_tprod, PiTensorProduct.lift.tprod, MultilinearMap.mkPiAlgebra_apply, Finset.univ_eq_empty, Finset.prod_empty] erw [isEmptyEquiv_tprod] @[simp] lemma contrAll'_mapIso (e : X ≃ Y) (h : cX.MapIso e cY) : 𝓣.contrAll' ∘ₗ (TensorProduct.congr (𝓣.mapIso e h) (LinearEquiv.refl R _)).toLinearMap = 𝓣.contrAll' ∘ₗ (TensorProduct.congr (LinearEquiv.refl R _) (𝓣.mapIso e.symm h.symm.dual)).toLinearMap := by apply TensorProduct.ext' refine fun x ↦ PiTensorProduct.induction_on' x ?_ (by intro a b hx hy y simp [map_add, add_tmul, hx, hy]) intro rx fx refine fun y ↦ PiTensorProduct.induction_on' y ?_ (by intro a b hx hy simp at hx hy simp [map_add, tmul_add, hx, hy]) intro ry fy simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, Function.comp_apply, tmul_smul, LinearMapClass.map_smul, LinearMap.coe_comp, LinearEquiv.coe_coe, congr_tmul, mapIso_tprod, LinearEquiv.refl_apply, smul_eq_mul, smul_tmul] apply congrArg apply congrArg erw [contrAll'_tmul_tprod_tprod] erw [TensorProduct.congr_tmul] simp only [PiTensorProduct.lift.tprod, LinearEquiv.refl_apply] erw [mapIso_tprod] erw [contrAll'_tmul_tprod_tprod] rw [mkPiAlgebra_equiv e] simp only [Equiv.symm_symm_apply, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, PiTensorProduct.reindex_tprod, PiTensorProduct.lift.tprod] apply congrArg funext y rw [𝓣.contrDual_cast (congrFun h.symm y)] apply congrArg congr 1 simp [colorModuleCast] symm apply cast_eq_iff_heq.mpr simp [colorModuleCast, Equiv.apply_symm_apply] rw [Equiv.apply_symm_apply] exact HEq.symm (cast_heq _ _) @[simp] lemma contrAll'_mapIso_tmul (e : X ≃ Y) (h : cX.MapIso e cY) (x : 𝓣.Tensor cX) (y : 𝓣.Tensor (𝓣.τ ∘ cY)) : 𝓣.contrAll' ((𝓣.mapIso e h) x ⊗ₜ[R] y) = 𝓣.contrAll' (x ⊗ₜ[R] (𝓣.mapIso e.symm h.symm.dual y)) := by change (𝓣.contrAll' ∘ₗ (TensorProduct.congr (𝓣.mapIso e h) (LinearEquiv.refl R _)).toLinearMap) (x ⊗ₜ[R] y) = _ rw [contrAll'_mapIso] rfl /-- The contraction of all the indices of two tensors with dual colors. -/ def contrAll (e : X ≃ Y) (h : cX.ContrAll e cY) : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY →ₗ[R] R := 𝓣.contrAll' ∘ₗ (TensorProduct.congr (LinearEquiv.refl _ _) (𝓣.mapIso e.symm h.symm.toMapIso)).toLinearMap lemma contrAll_tmul (e : X ≃ Y) (h : cX.ContrAll e cY) (x : 𝓣.Tensor cX) (y : 𝓣.Tensor cY) : 𝓣.contrAll e h (x ⊗ₜ[R] y) = 𝓣.contrAll' (x ⊗ₜ[R] ((𝓣.mapIso e.symm h.symm.toMapIso) y)) := by rw [contrAll] simp only [LinearMap.coe_comp, Function.comp_apply] rfl @[simp] lemma contrAll_mapIso_right_tmul (e : X ≃ Y) (e' : Z ≃ Y) (h : c.ContrAll e cY) (h' : cZ.MapIso e' cY) (x : 𝓣.Tensor c) (z : 𝓣.Tensor cZ) : 𝓣.contrAll e h (x ⊗ₜ[R] 𝓣.mapIso e' h' z) = 𝓣.contrAll (e.trans e'.symm) (h.trans_mapIso h') (x ⊗ₜ[R] z) := by simp only [contrAll_tmul, mapIso_mapIso] apply congrArg rfl @[simp] lemma contrAll_comp_mapIso_right (e : X ≃ Y) (e' : Z ≃ Y) (h : c.ContrAll e cY) (h' : cZ.MapIso e' cY) : 𝓣.contrAll e h ∘ₗ (TensorProduct.congr (LinearEquiv.refl R (𝓣.Tensor c)) (𝓣.mapIso e' h')).toLinearMap = 𝓣.contrAll (e.trans e'.symm) (h.trans_mapIso h') := by apply TensorProduct.ext' intro x y exact 𝓣.contrAll_mapIso_right_tmul e e' h h' x y @[simp] lemma contrAll_mapIso_left_tmul {e : X ≃ Y} {e' : Z ≃ X} (h : cX.ContrAll e cY) (h' : cZ.MapIso e' cX) (x : 𝓣.Tensor cZ) (y : 𝓣.Tensor cY) : 𝓣.contrAll e h (𝓣.mapIso e' h' x ⊗ₜ[R] y) = 𝓣.contrAll (e'.trans e) (h.mapIso_trans h') (x ⊗ₜ[R] y) := by simp only [contrAll_tmul, contrAll'_mapIso_tmul, mapIso_mapIso] rfl @[simp] lemma contrAll_mapIso_left {e : X ≃ Y} {e' : Z ≃ X} (h : cX.ContrAll e cY) (h' : cZ.MapIso e' cX) : 𝓣.contrAll e h ∘ₗ (TensorProduct.congr (𝓣.mapIso e' h') (LinearEquiv.refl R (𝓣.Tensor cY))).toLinearMap = 𝓣.contrAll (e'.trans e) (h.mapIso_trans h') := by apply TensorProduct.ext' intro x y exact 𝓣.contrAll_mapIso_left_tmul h h' x y /-- The linear map from `𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY ⊗[R] 𝓣.Tensor cZ` to `𝓣.Tensor cZ` obtained by contracting all indices in `𝓣.Tensor cX` and `𝓣.Tensor cY`, given a proof that this is possible. -/ def contrAllLeft (e : X ≃ Y) (h : cX.ContrAll e cY) : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY ⊗[R] 𝓣.Tensor cZ →ₗ[R] 𝓣.Tensor cZ := (TensorProduct.lid R _).toLinearMap ∘ₗ TensorProduct.map (𝓣.contrAll e h) (LinearEquiv.refl R (𝓣.Tensor cZ)).toLinearMap ∘ₗ (TensorProduct.assoc R _ _ _).symm.toLinearMap /-- The linear map from `(𝓣.Tensor cW ⊗[R] 𝓣.Tensor cX) ⊗[R] (𝓣.Tensor cY ⊗[R] 𝓣.Tensor cZ)` to `𝓣.Tensor cW ⊗[R] 𝓣.Tensor cZ` obtained by contracting all indices of the tensors in the middle. -/ def contrAllMid (e : X ≃ Y) (h : cX.ContrAll e cY) : (𝓣.Tensor cW ⊗[R] 𝓣.Tensor cX) ⊗[R] (𝓣.Tensor cY ⊗[R] 𝓣.Tensor cZ) →ₗ[R] 𝓣.Tensor cW ⊗[R] 𝓣.Tensor cZ := (TensorProduct.map (LinearEquiv.refl R _).toLinearMap (𝓣.contrAllLeft e h)) ∘ₗ (TensorProduct.assoc R _ _ _).toLinearMap /-- The linear map from `𝓣.Tensor (Sum.elim cW cX) ⊗[R] 𝓣.Tensor (Sum.elim cY cZ)` to `𝓣.Tensor (Sum.elim cW cZ)` formed by contracting the indices specified by `cX` and `cY`, which are assumed to be dual. -/ def contrElim (e : X ≃ Y) (h : cX.ContrAll e cY) : 𝓣.Tensor (Sum.elim cW cX) ⊗[R] 𝓣.Tensor (Sum.elim cY cZ) →ₗ[R] 𝓣.Tensor (Sum.elim cW cZ) := (𝓣.tensoratorEquiv cW cZ).toLinearMap ∘ₗ 𝓣.contrAllMid e h ∘ₗ (TensorProduct.congr (𝓣.tensoratorEquiv cW cX).symm (𝓣.tensoratorEquiv cY cZ).symm).toLinearMap /-! ## Group acting on contraction -/ @[simp] lemma contrAll_rep (e : X ≃ Y) (h : cX.ContrAll e cY) (g : G) : 𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.contrAll e h := by apply TensorProduct.ext' refine fun x ↦ PiTensorProduct.induction_on' x ?_ (by intro a b hx hy y simp [map_add, add_tmul, hx, hy]) intro rx fx refine fun y ↦ PiTensorProduct.induction_on' y ?_ (by intro a b hx hy simp at hx hy simp [map_add, tmul_add, hx, hy]) intro ry fy simp only [contrAll_tmul, PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, smul_tmul, LinearMapClass.map_smul, LinearMap.coe_comp, Function.comp_apply, map_tmul, rep_tprod, smul_eq_mul] apply congrArg apply congrArg simp only [contrAll', mapIso_tprod, Equiv.symm_symm_apply, colorModuleCast_equivariant_apply, LinearMap.coe_comp, Function.comp_apply] apply congrArg erw [pairProd_tmul_tprod_tprod, pairProd_tmul_tprod_tprod, PiTensorProduct.map_tprod, PiTensorProduct.map_tprod] apply congrArg funext x nth_rewrite 2 [← contrDual_inv (cX x) g] rfl @[simp] lemma contrAll_rep_apply {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e) (g : G) (x : 𝓣.Tensor c ⊗ 𝓣.Tensor d) : 𝓣.contrAll e h (TensorProduct.map (𝓣.rep g) (𝓣.rep g) x) = 𝓣.contrAll e h x := by change (𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x = _ rw [contrAll_rep] @[simp] lemma contrAll_rep_tmul {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e) (g : G) (x : 𝓣.Tensor c) (y : 𝓣.Tensor d) : 𝓣.contrAll e h ((g • x) ⊗ₜ[R] (g • y)) = 𝓣.contrAll e h (x ⊗ₜ[R] y) := by nth_rewrite 2 [← @contrAll_rep_apply R _ 𝓣 _ _ _ G] rfl /-! ## Contraction based on specification -/ lemma contr_cond (e : (C ⊕ C) ⊕ P ≃ X) : cX.MapIso e.symm (Sum.elim (Sum.elim (cX.contrLeft e) (cX.contrRight e)) (cX.contr e)) := by rw [TensorColor.ColorMap.MapIso, Equiv.eq_comp_symm] funext x match x with | Sum.inl (Sum.inl x) => rfl | Sum.inl (Sum.inr x) => rfl | Sum.inr x => rfl /-- Contraction of indices based on an equivalence `(C ⊕ C) ⊕ P ≃ X`. The indices in `C` are contracted pair-wise, whilst the indices in `P` are preserved. -/ def contr (e : (C ⊕ C) ⊕ P ≃ X) (h : cX.ContrCond e) : 𝓣.Tensor cX →ₗ[R] 𝓣.Tensor (cX.contr e) := (TensorProduct.lid R _).toLinearMap ∘ₗ (TensorProduct.map (𝓣.contrAll (Equiv.refl C) h.to_contrAll) LinearMap.id) ∘ₗ (TensorProduct.congr (𝓣.tensoratorEquiv _ _).symm (LinearEquiv.refl R _)).toLinearMap ∘ₗ (𝓣.tensoratorEquiv _ _).symm.toLinearMap ∘ₗ (𝓣.mapIso e.symm (𝓣.contr_cond e)).toLinearMap open PiTensorProduct in lemma contr_tprod (e : (C ⊕ C) ⊕ P ≃ X) (h : cX.ContrCond e) (f : (i : X) → 𝓣.ColorModule (cX i)) : 𝓣.contr e h (tprod R f) = (𝓣.contrAll (Equiv.refl C) h.to_contrAll (tprod R (fun i => f (e (Sum.inl (Sum.inl i)))) ⊗ₜ[R] tprod R (fun i => f (e (Sum.inl (Sum.inr i)))))) • tprod R (fun (p : P) => f (e (Sum.inr p))) := by simp only [contr, LinearEquiv.comp_coe, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, LinearEquiv.trans_apply, mapIso_tprod, Equiv.symm_symm_apply, tensoratorEquiv_symm_tprod, congr_tmul, LinearEquiv.refl_apply, map_tmul, LinearMap.id_coe, id_eq, lid_tmul] rw [contrAll_tmul] rfl open PiTensorProduct in @[simp] lemma contr_tprod_isEmpty [IsEmpty C] (e : (C ⊕ C) ⊕ P ≃ X) (h : cX.ContrCond e) (f : (i : X) → 𝓣.ColorModule (cX i)) : 𝓣.contr e h (tprod R f) = tprod R (fun (p : P) => f (e (Sum.inr p))) := by rw [contr_tprod] rw [contrAll_tmul, contrAll'_isEmpty_tmul] simp only [isEmptyEquiv_tprod, Equiv.refl_symm, mapIso_tprod, Equiv.refl_apply, one_mul] erw [isEmptyEquiv_tprod] simp /-- The contraction of indices via `contr` is equivariant. -/ @[simp] lemma contr_equivariant (e : (C ⊕ C) ⊕ P ≃ X) (h : cX.ContrCond e) (g : G) (x : 𝓣.Tensor cX) : 𝓣.contr e h (g • x) = g • 𝓣.contr e h x := by simp only [TensorColor.ColorMap.contr, contr, TensorProduct.congr, LinearEquiv.refl_toLinearMap, LinearEquiv.symm_symm, LinearEquiv.refl_symm, LinearEquiv.ofLinear_toLinearMap, LinearEquiv.comp_coe, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, LinearEquiv.trans_apply, rep_mapIso_apply, rep_tensoratorEquiv_symm_apply] rw [← LinearMap.comp_apply (TensorProduct.map _ _), ← TensorProduct.map_comp] rw [← LinearMap.comp_apply (TensorProduct.map _ _), ← TensorProduct.map_comp] rw [LinearMap.comp_assoc, rep_tensoratorEquiv_symm, ← LinearMap.comp_assoc] simp only [contrAll_rep, LinearMap.comp_id, LinearMap.id_comp] have h1 {M N A B : Type} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid A] [AddCommMonoid B] [Module R M] [Module R N] [Module R A] [Module R B] (f : M →ₗ[R] N) (g : A →ₗ[R] B) : TensorProduct.map f g = TensorProduct.map (LinearMap.id) g ∘ₗ TensorProduct.map f (LinearMap.id) := ext rfl rw [h1] simp only [LinearMap.coe_comp, Function.comp_apply, rep_lid_apply] rw [← LinearMap.comp_apply (TensorProduct.map _ _), ← TensorProduct.map_comp] rfl end TensorStructure