/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.BeyondTheStandardModel.PatiSalam.Basic import HepLean.BeyondTheStandardModel.GeorgiGlashow.Basic import HepLean.Meta.Informal /-! # The Spin(10) Model Note: By physicists this is usually called SO(10). However, the true gauge group involved is Spin(10). -/ namespace Spin10Model informal_definition GaugeGroupI where math :≈ "The group `Spin(10)`." physics :≈ "The gauge group of the Spin(10) model (aka SO(10)-model.)" informal_definition inclPatiSalam where physics :≈ "The inclusion of the Pati-Salam gauge group into Spin(10)." math :≈ "The lift of the embedding `SO(6) x SO(4) → SO(10)` to universal covers, giving a homomorphism `Spin(6) x Spin(4) → Spin(10)`. Precomposed with the isomorphism, ``PatiSalam.gaugeGroupISpinEquiv, between `SU(4) x SU(2) x SU(2)` and `Spin(6) x Spin(4)`." ref :≈ "Page 56 of https://math.ucr.edu/home/baez/guts.pdf" deps :≈ [``GaugeGroupI, ``PatiSalam.GaugeGroupI, ``PatiSalam.gaugeGroupISpinEquiv] informal_definition inclSM where physics :≈ "The inclusion of the Standard Model gauge group into Spin(10)." math :≈ "The compoisiton of ``embedPatiSalam and ``PatiSalam.inclSM." ref :≈ "Page 56 of https://math.ucr.edu/home/baez/guts.pdf" deps :≈ [``inclPatiSalam, ``PatiSalam.inclSM] informal_definition inclGeorgiGlashow where physics :≈ "The inclusion of the Georgi-Glashow gauge group into Spin(10)." math :≈ "The Lie group homomorphism from SU(n) → Spin(2n) dicussed on page 46 of https://math.ucr.edu/home/baez/guts.pdf for n = 5." deps :≈ [``GaugeGroupI, ``GeorgiGlashow.GaugeGroupI] informal_definition inclSMThruGeorgiGlashow where physics :≈ "The inclusion of the Standard Model gauge group into Spin(10)." math :≈ "The composition of ``inclGeorgiGlashow and ``GeorgiGlashow.inclSM." deps :≈ [``inclGeorgiGlashow, ``GeorgiGlashow.inclSM] informal_lemma inclSM_eq_inclSMThruGeorgiGlashow where math :≈ "The inclusion ``inclSM is equal to the inclusion ``inclSMThruGeorgiGlashow." deps :≈ [``inclSM, ``inclSMThruGeorgiGlashow] end Spin10Model