/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.TensorSpecies.Basic /-! ## The contraction map -/ open IndexNotation open CategoryTheory open MonoidalCategory open OverColor open HepLean.Fin open TensorProduct noncomputable section namespace TensorSpecies variable (S : TensorSpecies) /-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` constructed by `finExtractTwo` under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FD`. -/ def contrFin1Fin1 {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) : S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅ (OverColor.Discrete.pairτ S.FD S.τ).obj { as := c i } := by apply (S.F.mapIso (OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans apply (Functor.Monoidal.μIso S.F _ _).symm.trans apply tensorIso ?_ ?_ · symm apply (OverColor.forgetLiftApp S.FD (c i)).symm.trans apply S.F.mapIso apply OverColor.mkIso funext x fin_cases x rfl · symm apply (OverColor.forgetLiftApp S.FD (S.τ (c i))).symm.trans apply S.F.mapIso apply OverColor.mkIso funext x fin_cases x simp [h] lemma contrFin1Fin1_inv_tmul {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) (x : S.FD.obj { as := c i }) (y : S.FD.obj { as := S.τ (c i) }) : (S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) = PiTensorProduct.tprod S.k (fun k => match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FD.map (eqToHom (by simp [h]))).hom y) := by simp only [Nat.succ_eq_add_one, contrFin1Fin1, Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, Iso.trans_symm, Iso.symm_symm_eq, Iso.trans_inv, tensorIso_inv, Iso.symm_inv, Functor.mapIso_hom, tensor_comp, Functor.Monoidal.μIso_hom, Functor.CoreMonoidal.toMonoidal_toLaxMonoidal, Category.assoc, Functor.LaxMonoidal.μ_natural, Functor.mapIso_inv, Action.comp_hom, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, mk_left, Functor.id_obj, mk_hom, Fin.isValue] change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom ((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom ((Functor.LaxMonoidal.μ S.F (OverColor.mk fun _ => c i) (OverColor.mk fun _ => S.τ (c i))).hom ((((OverColor.forgetLiftApp S.FD (c i)).inv.hom x) ⊗ₜ[S.k] ((OverColor.forgetLiftApp S.FD (S.τ (c i))).inv.hom y))))) = _ simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, forgetLiftApp, Action.mkIso_inv_hom, LinearEquiv.toModuleIso_inv, Fin.isValue] erw [OverColor.forgetLiftAppV_symm_apply, OverColor.forgetLiftAppV_symm_apply S.FD (S.τ (c i))] change ((OverColor.lift.obj S.FD).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom (((OverColor.lift.obj S.FD).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom ((Functor.LaxMonoidal.μ (OverColor.lift.obj S.FD).toFunctor (OverColor.mk fun _ => c i) (OverColor.mk fun _ => S.τ (c i))).hom (((PiTensorProduct.tprod S.k) fun _ => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun _ => y))) = _ rw [OverColor.lift.obj_μ_tprod_tmul S.FD] change ((OverColor.lift.obj S.FD).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom (((OverColor.lift.obj S.FD).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom ((PiTensorProduct.tprod S.k) _)) = _ rw [OverColor.lift.map_tprod S.FD] change ((OverColor.lift.obj S.FD).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom ((PiTensorProduct.tprod S.k _)) = _ rw [OverColor.lift.map_tprod S.FD] apply congrArg funext r match r with | Sum.inl 0 => simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply, instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm, instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, lift.discreteSumEquiv, Sum.elim_inl, Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor] simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply] rfl | Sum.inr 0 => simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply, instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm, instMonoidalCategoryStruct_tensorObj_hom, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, lift.discreteSumEquiv, Sum.elim_inl, Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor, LinearEquiv.ofLinear_apply] rfl lemma contrFin1Fin1_hom_hom_tprod {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) (x : (k : Fin 1 ⊕ Fin 1) → (S.FD.obj { as := (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).hom k })) : (S.contrFin1Fin1 c i j h).hom.hom (PiTensorProduct.tprod S.k x) = x (Sum.inl 0) ⊗ₜ[S.k] ((S.FD.map (eqToHom (by simp [h]))).hom (x (Sum.inr 0))) := by change ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).hom _ = _ trans ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).toLinearEquiv (PiTensorProduct.tprod S.k x) · rfl erw [← LinearEquiv.eq_symm_apply] erw [contrFin1Fin1_inv_tmul] congr funext i match i with | Sum.inl 0 => rfl | Sum.inr 0 => simp only [Nat.succ_eq_add_one, Fin.isValue, mk_hom, Function.comp_apply, Discrete.functor_obj_eq_as] change _ = ((S.FD.map (eqToHom _)) ≫ (S.FD.map (eqToHom _))).hom (x (Sum.inr 0)) rw [← Functor.map_comp] simp exact h /-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and a `j` in `Fin n.succ` allowing us to undertake contraction. -/ def contrIso {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) : S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FD S.τ).obj (Discrete.mk (c i))) ⊗ (OverColor.lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) := (S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <| (S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <| (Functor.Monoidal.μIso S.F _ _).symm.trans <| by refine tensorIso (S.contrFin1Fin1 c i j h) (S.F.mapIso (OverColor.mkIso (by ext x; simp))) lemma contrIso_hom_hom {n : ℕ} {c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} : (S.contrIso c1 i j h).hom.hom = (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫ (Functor.Monoidal.μIso S.F (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫ ((S.contrFin1Fin1 c1 i j h).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) := by rfl /-- `contrMap` is a function that takes a natural number `n`, a function `c` from `Fin n.succ.succ` to `S.C`, an index `i` of type `Fin n.succ.succ`, an index `j` of type `Fin n.succ`, and a proof `h` that `c (i.succAbove j) = S.τ (c i)`. It returns a morphism corresponding to the contraction of the `i`th index with the `i.succAbove j` index. --/ def contrMap {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) : S.F.obj (OverColor.mk c) ⟶ S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) := (S.contrIso c i j h).hom ≫ (tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫ (MonoidalCategory.leftUnitor _).hom /-- Acting with `contrMap` on a `tprod` gives a `tprod` multiplied by a scalar. -/ lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) (x : (i : Fin n.succ.succ) → S.FD.obj (Discrete.mk (c i))) : (S.contrMap c i j h).hom (PiTensorProduct.tprod S.k x) = (S.castToField ((S.contr.app (Discrete.mk (c i))).hom ((x i) ⊗ₜ[S.k] (S.FD.map (Discrete.eqToHom h)).hom (x (i.succAbove j)))) : S.k) • (PiTensorProduct.tprod S.k (fun k => x (i.succAbove (j.succAbove k))) : S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))) := by rw [contrMap, contrIso] simp only [Nat.succ_eq_add_one, S.F_def, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Monoidal.tensorUnit_obj, tensorHom_id, Category.assoc, Action.comp_hom, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom, Action.instMonoidalCategory_tensorUnit_V, Action.instMonoidalCategory_whiskerRight_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp, Function.comp_apply, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as] change (λ_ ((lift.obj S.FD).obj _)).hom.hom (((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V) (((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom) ((Functor.Monoidal.μIso (lift.obj S.FD).toFunctor (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom (((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom (((lift.obj S.FD).map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ((PiTensorProduct.tprod S.k) x)))))) = _ rw [lift.map_tprod] erw [lift.map_tprod] erw [lift.μIso_inv_tprod] change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom (((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V) ((TensorProduct.map (S.contrFin1Fin1 c i j h).hom.hom ((lift.obj S.FD).map (mkIso _).hom).hom) (((PiTensorProduct.tprod S.k) fun i_1 => (lift.discreteFunctorMapEqIso S.FD _) ((lift.discreteFunctorMapEqIso S.FD _) (x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm ((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inl i_1)))))) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun i_1 => (lift.discreteFunctorMapEqIso S.FD _) ((lift.discreteFunctorMapEqIso S.FD _) (x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm ((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inr i_1)))))))) = _ rw [TensorProduct.map_tmul] rw [contrFin1Fin1_hom_hom_tprod] simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue, mk_hom, Function.comp_apply, Discrete.functor_obj_eq_as, instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv, Equiv.refl_symm, Functor.id_obj, ModuleCat.MonoidalCategory.whiskerRight_apply] rw [Action.instMonoidalCategory_leftUnitor_hom_hom] simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue, ModuleCat.MonoidalCategory.leftUnitor_hom_apply] congr 1 /- The contraction. -/ · simp only [Fin.isValue, castToField] congr 2 · simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply] rfl · simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply] change (S.FD.map (eqToHom _)).hom (x (((HepLean.Fin.finExtractTwo i j)).symm ((Sum.inl (Sum.inr 0))))) = _ simp only [Nat.succ_eq_add_one, Fin.isValue] have h1' {a b d: Fin n.succ.succ} (hbd : b =d) (h : c d = S.τ (c a)) (h' : c b = S.τ (c a)) : (S.FD.map (Discrete.eqToHom (h))).hom (x d) = (S.FD.map (Discrete.eqToHom h')).hom (x b) := by subst hbd rfl refine h1' ?_ ?_ ?_ simp only [Nat.succ_eq_add_one, Fin.isValue, HepLean.Fin.finExtractTwo_symm_inl_inr_apply] simp [h] /- The tensor. -/ · erw [lift.map_tprod] apply congrArg funext d simp only [mk_hom, Function.comp_apply, lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply] change (S.FD.map (eqToHom _)).hom ((x ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr (d))))) = _ simp only [Nat.succ_eq_add_one] have h1 : ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr d)) = (i.succAbove (j.succAbove d)) := HepLean.Fin.finExtractTwo_symm_inr_apply i j d have h1' {a b : Fin n.succ.succ} (h : a = b) : (S.FD.map (eqToHom (by rw [h]))).hom (x a) = x b := by subst h simp exact h1' h1 end TensorSpecies end