/- Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.PerturbationTheory.WickContraction.UncontractedList /-! # Inserting an element into a contraction based on a list -/ open FieldSpecification variable {𝓕 : FieldSpecification} namespace WickContraction variable {n : ℕ} (c : WickContraction n) open HepLean.List open HepLean.Fin /-! ## Inserting an element into a list -/ /-- Given a Wick contraction `c` associated to a list `φs`, a position `i : Fin n.succ`, an element `φ`, and an optional uncontracted element `j : Option (c.uncontracted)` of `c`. The Wick contraction associated with `(φs.insertIdx i φ).length` formed by 'inserting' `φ` into `φs` after the first `i` elements and contracting it optionally with j. -/ def insertList (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (j : Option (c.uncontracted)) : WickContraction (φs.insertIdx i φ).length := congr (by simp) (c.insert i j) @[simp] lemma insertList_fstFieldOfContract (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (j : Option (c.uncontracted)) (a : c.1) : (insertList φ φs c i j).fstFieldOfContract (congrLift (insertIdx_length_fin φ φs i).symm (insertLift i j a)) = finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove (c.fstFieldOfContract a)) := by simp [insertList] @[simp] lemma insertList_sndFieldOfContract (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (j : Option (c.uncontracted)) (a : c.1) : (insertList φ φs c i j).sndFieldOfContract (congrLift (insertIdx_length_fin φ φs i).symm (insertLift i j a)) = finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove (c.sndFieldOfContract a)) := by simp [insertList] @[simp] lemma insertList_fstFieldOfContract_some_incl (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (j : c.uncontracted) : (insertList φ φs c i (some j)).fstFieldOfContract (congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by simp [insert]⟩) = if i < i.succAbove j.1 then finCongr (insertIdx_length_fin φ φs i).symm i else finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j.1) := by split · rename_i h refine (insertList φ φs c i (some j)).eq_fstFieldOfContract_of_mem (a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by simp [insert]⟩) (i := finCongr (insertIdx_length_fin φ φs i).symm i) (j := finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j)) ?_ ?_ ?_ · simp [congrLift] · simp [congrLift] · rw [Fin.lt_def] at h ⊢ simp_all · rename_i h refine (insertList φ φs c i (some j)).eq_fstFieldOfContract_of_mem (a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by simp [insert]⟩) (i := finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j)) (j := finCongr (insertIdx_length_fin φ φs i).symm i) ?_ ?_ ?_ · simp [congrLift] · simp [congrLift] · rw [Fin.lt_def] at h ⊢ simp_all only [Nat.succ_eq_add_one, Fin.val_fin_lt, not_lt, finCongr_apply, Fin.coe_cast] have hi : i.succAbove j ≠ i := by exact Fin.succAbove_ne i j omega /-! ## insertList and getDual? -/ @[simp] lemma insertList_none_getDual?_self (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) : (insertList φ φs c i none).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm i) = none := by simp only [Nat.succ_eq_add_one, insertList, getDual?_congr, finCongr_apply, Fin.cast_trans, Fin.cast_eq_self, Option.map_eq_none'] have h1 := c.insert_none_getDual?_isNone i simpa using h1 lemma insertList_isSome_getDual?_self (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (j : c.uncontracted) : ((insertList φ φs c i (some j)).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm i)).isSome := by simp [insertList, getDual?_congr] lemma insertList_some_getDual?_self_not_none (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (j : c.uncontracted) : ¬ ((insertList φ φs c i (some j)).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm i)) = none := by simp [insertList, getDual?_congr] @[simp] lemma insertList_some_getDual?_self_eq (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (j : c.uncontracted) : ((insertList φ φs c i (some j)).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm i)) = some (Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove j)) := by simp [insertList, getDual?_congr] @[simp] lemma insertList_some_getDual?_some_eq (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (j : c.uncontracted) : ((insertList φ φs c i (some j)).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove j))) = some (Fin.cast (insertIdx_length_fin φ φs i).symm i) := by rw [getDual?_eq_some_iff_mem] rw [@Finset.pair_comm] rw [← getDual?_eq_some_iff_mem] simp @[simp] lemma insertList_none_succAbove_getDual?_eq_none_iff (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (j : Fin φs.length) : (insertList φ φs c i none).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove j)) = none ↔ c.getDual? j = none := by simp [insertList, getDual?_congr] @[simp] lemma insertList_some_succAbove_getDual?_eq_option (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (j : Fin φs.length) (k : c.uncontracted) (hkj : j ≠ k.1) : (insertList φ φs c i (some k)).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove j)) = Option.map (Fin.cast (insertIdx_length_fin φ φs i).symm ∘ i.succAbove) (c.getDual? j) := by simp only [Nat.succ_eq_add_one, insertList, getDual?_congr, finCongr_apply, Fin.cast_trans, Fin.cast_eq_self, ne_eq, hkj, not_false_eq_true, insert_some_getDual?_of_neq, Option.map_map] rfl @[simp] lemma insertList_none_succAbove_getDual?_isSome_iff (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (j : Fin φs.length) : ((insertList φ φs c i none).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove j))).isSome ↔ (c.getDual? j).isSome := by rw [← not_iff_not] simp @[simp] lemma insertList_none_getDual?_get_eq (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (j : Fin φs.length) (h : ((insertList φ φs c i none).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove j))).isSome) : ((insertList φ φs c i none).getDual? (Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove j))).get h = Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove ((c.getDual? j).get (by simpa using h))) := by simp [insertList, getDual?_congr_get] /-........................................... -/ @[simp] lemma insertList_sndFieldOfContract_some_incl (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (j : c.uncontracted) : (insertList φ φs c i (some j)).sndFieldOfContract (congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by simp [insert]⟩) = if i < i.succAbove j.1 then finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j.1) else finCongr (insertIdx_length_fin φ φs i).symm i := by split · rename_i h refine (insertList φ φs c i (some j)).eq_sndFieldOfContract_of_mem (a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by simp [insert]⟩) (i := finCongr (insertIdx_length_fin φ φs i).symm i) (j := finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j)) ?_ ?_ ?_ · simp [congrLift] · simp [congrLift] · rw [Fin.lt_def] at h ⊢ simp_all · rename_i h refine (insertList φ φs c i (some j)).eq_sndFieldOfContract_of_mem (a := congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by simp [insert]⟩) (i := finCongr (insertIdx_length_fin φ φs i).symm (i.succAbove j)) (j := finCongr (insertIdx_length_fin φ φs i).symm i) ?_ ?_ ?_ · simp [congrLift] · simp [congrLift] · rw [Fin.lt_def] at h ⊢ simp_all only [Nat.succ_eq_add_one, Fin.val_fin_lt, not_lt, finCongr_apply, Fin.coe_cast] have hi : i.succAbove j ≠ i := by exact Fin.succAbove_ne i j omega lemma insertList_none_prod_contractions (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (f : (c.insertList φ φs i none).1 → M) [CommMonoid M] : ∏ a, f a = ∏ (a : c.1), f (congrLift (insertIdx_length_fin φ φs i).symm (insertLift i none a)) := by let e1 := Equiv.ofBijective (c.insertLift i none) (insertLift_none_bijective i) let e2 := Equiv.ofBijective (congrLift (insertIdx_length_fin φ φs i).symm) ((c.insert i none).congrLift_bijective ((insertIdx_length_fin φ φs i).symm)) erw [← e2.prod_comp] erw [← e1.prod_comp] rfl lemma insertList_some_prod_contractions (φ : 𝓕.States) (φs : List 𝓕.States) (c : WickContraction φs.length) (i : Fin φs.length.succ) (j : c.uncontracted) (f : (c.insertList φ φs i (some j)).1 → M) [CommMonoid M] : ∏ a, f a = f (congrLift (insertIdx_length_fin φ φs i).symm ⟨{i, i.succAbove j}, by simp [insert]⟩) * ∏ (a : c.1), f (congrLift (insertIdx_length_fin φ φs i).symm (insertLift i (some j) a)) := by let e2 := Equiv.ofBijective (congrLift (insertIdx_length_fin φ φs i).symm) ((c.insert i (some j)).congrLift_bijective ((insertIdx_length_fin φ φs i).symm)) erw [← e2.prod_comp] let e1 := Equiv.ofBijective (c.insertLiftSome i j) (insertLiftSome_bijective i j) erw [← e1.prod_comp] rw [Fintype.prod_sum_type] simp only [Finset.univ_unique, PUnit.default_eq_unit, Nat.succ_eq_add_one, Finset.prod_singleton, Finset.univ_eq_attach] rfl /-- Given a finite set of `Fin φs.length` the finite set of `(φs.insertIdx i φ).length` formed by mapping elements using `i.succAboveEmb` and `finCongr`. -/ def insertListLiftFinset (φ : 𝓕.States) {φs : List 𝓕.States} (i : Fin φs.length.succ) (a : Finset (Fin φs.length)) : Finset (Fin (φs.insertIdx i φ).length) := (a.map i.succAboveEmb).map (finCongr (insertIdx_length_fin φ φs i).symm).toEmbedding @[simp] lemma self_not_mem_insertListLiftFinset (φ : 𝓕.States) {φs : List 𝓕.States} (i : Fin φs.length.succ) (a : Finset (Fin φs.length)) : Fin.cast (insertIdx_length_fin φ φs i).symm i ∉ insertListLiftFinset φ i a := by simp only [Nat.succ_eq_add_one, insertListLiftFinset, Finset.mem_map_equiv, finCongr_symm, finCongr_apply, Fin.cast_trans, Fin.cast_eq_self] simp only [Finset.mem_map, Fin.succAboveEmb_apply, not_exists, not_and] intro x exact fun a => Fin.succAbove_ne i x lemma succAbove_mem_insertListLiftFinset (φ : 𝓕.States) {φs : List 𝓕.States} (i : Fin φs.length.succ) (a : Finset (Fin φs.length)) (j : Fin φs.length) : Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove j) ∈ insertListLiftFinset φ i a ↔ j ∈ a := by simp only [insertListLiftFinset, Finset.mem_map_equiv, finCongr_symm, finCongr_apply, Fin.cast_trans, Fin.cast_eq_self] simp only [Finset.mem_map, Fin.succAboveEmb_apply] apply Iff.intro · intro h obtain ⟨x, hx1, hx2⟩ := h rw [Function.Injective.eq_iff (Fin.succAbove_right_injective)] at hx2 simp_all · intro h use j lemma insert_fin_eq_self (φ : 𝓕.States) {φs : List 𝓕.States} (i : Fin φs.length.succ) (j : Fin (List.insertIdx i φ φs).length) : j = Fin.cast (insertIdx_length_fin φ φs i).symm i ∨ ∃ k, j = Fin.cast (insertIdx_length_fin φ φs i).symm (i.succAbove k) := by obtain ⟨k, hk⟩ := (finCongr (insertIdx_length_fin φ φs i).symm).surjective j subst hk by_cases hi : k = i · simp [hi] · simp only [Nat.succ_eq_add_one, ← Fin.exists_succAbove_eq_iff] at hi obtain ⟨z, hk⟩ := hi subst hk right use z rfl lemma insertList_uncontractedList_none_map (φ : 𝓕.States) {φs : List 𝓕.States} (c : WickContraction φs.length) (i : Fin φs.length.succ) : List.map (List.insertIdx (↑i) φ φs).get (insertList φ φs c i none).uncontractedList = List.insertIdx (c.uncontractedListOrderPos i) φ (List.map φs.get c.uncontractedList) := by simp only [Nat.succ_eq_add_one, insertList] rw [congr_uncontractedList] erw [uncontractedList_extractEquiv_symm_none] rw [orderedInsert_succAboveEmb_uncontractedList_eq_insertIdx] rw [insertIdx_map, insertIdx_map] congr 1 · simp rw [List.map_map, List.map_map] congr conv_rhs => rw [get_eq_insertIdx_succAbove φ φs i] rfl lemma insertLift_sum (φ : 𝓕.States) {φs : List 𝓕.States} (i : Fin φs.length.succ) [AddCommMonoid M] (f : WickContraction (φs.insertIdx i φ).length → M) : ∑ c, f c = ∑ (c : WickContraction φs.length), ∑ (k : Option (c.uncontracted)), f (insertList φ φs c i k) := by rw [sum_extractEquiv_congr (finCongr (insertIdx_length_fin φ φs i).symm i) f (insertIdx_length_fin φ φs i)] rfl end WickContraction