/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import Mathlib.Data.Complex.Exponential import Mathlib.Analysis.InnerProductSpace.PiL2 import HepLean.SpaceTime.SL2C.Basic import HepLean.SpaceTime.LorentzVector.Modules import HepLean.Meta.Informal import Mathlib.RepresentationTheory.Rep import HepLean.Tensors.Basic /-! # Complex Lorentz vectors We define complex Lorentz vectors in 4d space-time as representations of SL(2, C). -/ noncomputable section open Matrix open MatrixGroups open Complex open TensorProduct open SpaceTime namespace Lorentz /-- The representation of `SL(2, ℂ)` on complex vectors corresponding to contravariant Lorentz vectors. In index notation these have an up index `ψⁱ`. -/ def complexContr : Rep ℂ SL(2, ℂ) := Rep.of ContrℂModule.SL2CRep /-- The representation of `SL(2, ℂ)` on complex vectors corresponding to contravariant Lorentz vectors. In index notation these have a down index `ψⁱ`. -/ def complexCo : Rep ℂ SL(2, ℂ) := Rep.of CoℂModule.SL2CRep /-- The standard basis of complex contravariant Lorentz vectors. -/ def complexContrBasis : Basis (Fin 1 ⊕ Fin 3) ℂ complexContr := Basis.ofEquivFun (Equiv.linearEquiv ℂ ContrℂModule.toFin13ℂFun) @[simp] lemma complexContrBasis_ρ_apply (M : SL(2,ℂ)) (i j : Fin 1 ⊕ Fin 3) : (LinearMap.toMatrix complexContrBasis complexContrBasis) (complexContr.ρ M) i j = (LorentzGroup.toComplex (SL2C.toLorentzGroup M)) i j := by rw [LinearMap.toMatrix_apply] simp only [complexContrBasis, Basis.coe_ofEquivFun, Basis.ofEquivFun_repr_apply, transpose_apply] change (((LorentzGroup.toComplex (SL2C.toLorentzGroup M))) *ᵥ (Pi.single j 1)) i = _ simp only [mulVec_single, transpose_apply, mul_one] /-- The standard basis of complex covariant Lorentz vectors. -/ def complexCoBasis : Basis (Fin 1 ⊕ Fin 3) ℂ complexCo := Basis.ofEquivFun (Equiv.linearEquiv ℂ CoℂModule.toFin13ℂFun) @[simp] lemma complexCoBasis_ρ_apply (M : SL(2,ℂ)) (i j : Fin 1 ⊕ Fin 3) : (LinearMap.toMatrix complexCoBasis complexCoBasis) (complexCo.ρ M) i j = (LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ᵀ i j := by rw [LinearMap.toMatrix_apply] simp only [complexCoBasis, Basis.coe_ofEquivFun, Basis.ofEquivFun_repr_apply, transpose_apply] change ((LorentzGroup.toComplex (SL2C.toLorentzGroup M))⁻¹ᵀ *ᵥ (Pi.single j 1)) i = _ simp only [mulVec_single, transpose_apply, mul_one] end Lorentz end