/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.PerturbationTheory.Wick.SuperCommute /-! # Koszul signs and ordering for lists and algebras See e.g. - https://pcteserver.mi.infn.it/~molinari/NOTES/WICK23.pdf -/ namespace Wick noncomputable section /-- A map from the free algebra of fields `FreeAlgebra ℂ I` to an algebra `A`, to be thought of as the operator algebra is said to be an operator map if all super commutors of fields land in the center of `A`, if two fields are of a different grade then their super commutor lands on zero, and the `koszulOrder` (normal order) of any term with a super commutor of two fields present is zero. This can be thought as as a condtion on the operator algebra `A` as much as it can on `F`. -/ class OperatorMap {A : Type} [Semiring A] [Algebra ℂ A] (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1] (F : FreeAlgebra ℂ I →ₐ[ℂ] A) : Prop where superCommute_mem_center : ∀ i j, F (superCommute q (FreeAlgebra.ι ℂ i) (FreeAlgebra.ι ℂ j)) ∈ Subalgebra.center ℂ A superCommute_diff_grade_zero : ∀ i j, q i ≠ q j → F (superCommute q (FreeAlgebra.ι ℂ i) (FreeAlgebra.ι ℂ j)) = 0 superCommute_ordered_zero : ∀ i j, ∀ a b, F (koszulOrder le1 q (a * superCommute q (FreeAlgebra.ι ℂ i) (FreeAlgebra.ι ℂ j) * b)) = 0 namespace OperatorMap variable {A : Type} [Semiring A] [Algebra ℂ A] {q : I → Fin 2} {le1 : I → I → Prop} [DecidableRel le1] (F : FreeAlgebra ℂ I →ₐ[ℂ] A) lemma superCommute_ofList_singleton_ι_center [OperatorMap q le1 F] (i j :I) : F (superCommute q (ofList [i] xa) (FreeAlgebra.ι ℂ j)) ∈ Subalgebra.center ℂ A := by have h1 : F (superCommute q (ofList [i] xa) (FreeAlgebra.ι ℂ j)) = xa • F (superCommute q (FreeAlgebra.ι ℂ i) (FreeAlgebra.ι ℂ j)) := by rw [← map_smul] congr rw [ofList_eq_smul_one, ofList_singleton] rw [map_smul] rfl rw [h1] refine Subalgebra.smul_mem (Subalgebra.center ℂ A) ?_ xa exact superCommute_mem_center (le1 := le1) i j end OperatorMap lemma superCommuteSplit_operatorMap {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1] (lb : List I) (xa xb : ℂ) (n : ℕ) (hn : n < lb.length) {A : Type} [Semiring A] [Algebra ℂ A] (f : FreeAlgebra ℂ I →ₐ[ℂ] A) [OperatorMap q le1 f] (i : I) : f (superCommuteSplit q [i] lb xa xb n hn) = f (superCommute q (ofList [i] xa) (FreeAlgebra.ι ℂ (lb.get ⟨n, hn⟩))) * (superCommuteCoef q [i] (List.take n lb) • f (ofList (List.eraseIdx lb n) xb)) := by have hn : f ((superCommute q) (ofList [i] xa) (FreeAlgebra.ι ℂ (lb.get ⟨n, hn⟩))) ∈ Subalgebra.center ℂ A := OperatorMap.superCommute_ofList_singleton_ι_center (le1 := le1) f i (lb.get ⟨n, hn⟩) rw [Subalgebra.mem_center_iff] at hn rw [superCommuteSplit, map_mul, map_mul, map_smul, hn, mul_assoc, smul_mul_assoc, ← map_mul, ← ofList_pair] congr · exact Eq.symm (List.eraseIdx_eq_take_drop_succ lb n) · exact one_mul xb lemma superCommuteLiftSplit_operatorMap {I : Type} {f : I → Type} [∀ i, Fintype (f i)] (q : I → Fin 2) (c : (Σ i, f i)) (r : List I) (x y : ℂ) (n : ℕ) (hn : n < r.length) (le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1] {A : Type} [Semiring A] [Algebra ℂ A] (F : FreeAlgebra ℂ (Σ i, f i) →ₐ[ℂ] A) [OperatorMap (fun i => q i.1) le1 F] : F (superCommuteLiftSplit q [c] r x y n hn) = superCommuteLiftCoef q [c] (List.take n r) • (F (superCommute (fun i => q i.1) (ofList [c] x) (sumFiber f (FreeAlgebra.ι ℂ (r.get ⟨n, hn⟩)))) * F (ofListLift f (List.eraseIdx r n) y)) := by rw [superCommuteLiftSplit] rw [map_smul] congr rw [map_mul, map_mul] have h1 : F ((superCommute fun i => q i.fst) (ofList [c] x) ((sumFiber f) (FreeAlgebra.ι ℂ (r.get ⟨n, hn⟩)))) ∈ Subalgebra.center ℂ A := by rw [sumFiber_ι] rw [map_sum, map_sum] refine Subalgebra.sum_mem _ ?_ intro n exact fun a => OperatorMap.superCommute_ofList_singleton_ι_center (le1 := le1) F c _ rw [Subalgebra.mem_center_iff] at h1 rw [h1, mul_assoc, ← map_mul] congr rw [ofListLift, ofListLift, ofListLift, ← map_mul] congr rw [← ofList_pair, one_mul] congr exact Eq.symm (List.eraseIdx_eq_take_drop_succ r n) lemma superCommute_koszulOrder_le_ofList {I : Type} (q : I → Fin 2) (r : List I) (x : ℂ) (le1 :I → I → Prop) [DecidableRel le1] [IsTotal I le1] [IsTrans I le1] (i : I) {A : Type} [Semiring A] [Algebra ℂ A] (F : FreeAlgebra ℂ I →ₐ A) [OperatorMap q le1 F] : F ((superCommute q (FreeAlgebra.ι ℂ i) (koszulOrder le1 q (ofList r x)))) = ∑ n : Fin r.length, (superCommuteCoef q [r.get n] (r.take n)) • (F (((superCommute q) (ofList [i] 1)) (FreeAlgebra.ι ℂ (r.get n))) * F ((koszulOrder le1 q) (ofList (r.eraseIdx ↑n) x))) := by rw [koszulOrder_ofList, map_smul, map_smul, ← ofList_singleton, superCommute_ofList_sum] rw [map_sum, ← (HepLean.List.insertionSortEquiv le1 r).sum_comp] conv_lhs => enter [2, 2] intro n rw [superCommuteSplit_operatorMap (le1 := le1)] enter [1, 2, 2, 2] change ((List.insertionSort le1 r).get ∘ (HepLean.List.insertionSortEquiv le1 r)) n rw [HepLean.List.insertionSort_get_comp_insertionSortEquiv] conv_lhs => enter [2, 2] intro n rw [HepLean.List.eraseIdx_insertionSort_fin le1 r n] rw [ofList_insertionSort_eq_koszulOrder le1 q] rw [Finset.smul_sum] conv_lhs => rhs intro n rw [map_smul, smul_smul, Algebra.mul_smul_comm, smul_smul] congr funext n by_cases hq : q i ≠ q (r.get n) · have hn := OperatorMap.superCommute_diff_grade_zero (q := q) (F := F) le1 i (r.get n) hq conv_lhs => enter [2, 1] rw [ofList_singleton, hn] conv_rhs => enter [2, 1] rw [ofList_singleton, hn] simp · congr 1 trans staticWickCoef q le1 r i n · rw [staticWickCoef, mul_assoc] refine staticWickCoef_eq_get q le1 r i n ?_ simpa using hq lemma koszulOrder_of_le_all_ofList {I : Type} (q : I → Fin 2) (r : List I) (x : ℂ) (le1 : I → I → Prop) [DecidableRel le1] (i : I) {A : Type} [Semiring A] [Algebra ℂ A] (F : FreeAlgebra ℂ I →ₐ A) [OperatorMap q le1 F] : F (koszulOrder le1 q (ofList r x * FreeAlgebra.ι ℂ i)) = superCommuteCoef q [i] r • F (koszulOrder le1 q (FreeAlgebra.ι ℂ i * ofList r x)) := by conv_lhs => enter [2, 2] rw [← ofList_singleton] rw [ofListLift_ofList_superCommute' q] rw [map_sub] rw [sub_eq_add_neg] rw [map_add] conv_lhs => enter [2, 2] rw [map_smul] rw [← neg_smul] rw [map_smul, map_smul, map_smul] conv_lhs => rhs rhs rw [superCommute_ofList_sum] rw [map_sum, map_sum] dsimp [superCommuteSplit] rw [ofList_singleton] rhs intro n rw [Algebra.smul_mul_assoc, Algebra.smul_mul_assoc] rw [map_smul, map_smul] rw [OperatorMap.superCommute_ordered_zero] simp only [smul_zero, Finset.sum_const_zero, add_zero] rw [ofList_singleton] lemma le_all_mul_koszulOrder_ofList {I : Type} (q : I → Fin 2) (r : List I) (x : ℂ) (le1 : I → I→ Prop) [DecidableRel le1] (i : I) (hi : ∀ (j : I), le1 j i) {A : Type} [Semiring A] [Algebra ℂ A] (F : FreeAlgebra ℂ I →ₐ A) [OperatorMap q le1 F] : F (FreeAlgebra.ι ℂ i * koszulOrder le1 q (ofList r x)) = F ((koszulOrder le1 q) (FreeAlgebra.ι ℂ i * ofList r x)) + F (((superCommute q) (ofList [i] 1)) ((koszulOrder le1 q) (ofList r x))) := by rw [koszulOrder_ofList, Algebra.mul_smul_comm, map_smul, ← ofList_singleton, ofList_ofList_superCommute q, map_add, smul_add, ← map_smul] conv_lhs => enter [1, 2] rw [← Algebra.smul_mul_assoc, smul_smul, mul_comm, ← smul_smul, ← koszulOrder_ofList, Algebra.smul_mul_assoc, ofList_singleton] rw [koszulOrder_mul_ge, map_smul] congr · rw [koszulOrder_of_le_all_ofList] rw [superCommuteCoef_perm_snd q [i] (List.insertionSort le1 r) r (List.perm_insertionSort le1 r)] rw [smul_smul] rw [superCommuteCoef_mul_self] simp [ofList_singleton] · rw [map_smul, map_smul] · exact fun j => hi j /-- In the expansions of `F (FreeAlgebra.ι ℂ i * koszulOrder le1 q (ofList r x))` the ter multiplying `F ((koszulOrder le1 q) (ofList (optionEraseZ r i n) x))`. -/ def superCommuteCenterOrder {I : Type} (q : I → Fin 2) (r : List I) (i : I) {A : Type} [Semiring A] [Algebra ℂ A] (F : FreeAlgebra ℂ I →ₐ[ℂ] A) (n : Option (Fin r.length)) : A := match n with | none => 1 | some n => superCommuteCoef q [r.get n] (r.take n) • F (((superCommute q) (ofList [i] 1)) (FreeAlgebra.ι ℂ (r.get n))) @[simp] lemma superCommuteCenterOrder_none {I : Type} (q : I → Fin 2) (r : List I) (i : I) {A : Type} [Semiring A] [Algebra ℂ A] (F : FreeAlgebra ℂ I →ₐ[ℂ] A) : superCommuteCenterOrder q r i F none = 1 := by simp [superCommuteCenterOrder] open HepLean.List lemma le_all_mul_koszulOrder_ofList_expand {I : Type} (q : I → Fin 2) (r : List I) (x : ℂ) (le1 : I → I→ Prop) [DecidableRel le1] [IsTotal I le1] [IsTrans I le1] (i : I) (hi : ∀ (j : I), le1 j i) {A : Type} [Semiring A] [Algebra ℂ A] (F : FreeAlgebra ℂ I →ₐ[ℂ] A) [OperatorMap q le1 F] : F (FreeAlgebra.ι ℂ i * koszulOrder le1 q (ofList r x)) = ∑ n, superCommuteCenterOrder q r i F n * F ((koszulOrder le1 q) (ofList (optionEraseZ r i n) x)) := by rw [le_all_mul_koszulOrder_ofList] conv_lhs => rhs rw [ofList_singleton] rw [superCommute_koszulOrder_le_ofList] simp only [List.get_eq_getElem, Fintype.sum_option, superCommuteCenterOrder_none, one_mul] congr · rw [← ofList_singleton, ← ofList_pair] simp only [List.singleton_append, one_mul] rfl · funext n simp only [superCommuteCenterOrder, List.get_eq_getElem, Algebra.smul_mul_assoc] rfl exact fun j => hi j lemma le_all_mul_koszulOrder_ofListLift_expand {I : Type} {f : I → Type} [∀ i, Fintype (f i)] (q : I → Fin 2) (r : List I) (x : ℂ) (le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1] [IsTotal (Σ i, f i) le1] [IsTrans (Σ i, f i) le1] (i : (Σ i, f i)) (hi : ∀ (j : (Σ i, f i)), le1 j i) {A : Type} [Semiring A] [Algebra ℂ A] (F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F] : F (ofList [i] 1 * koszulOrder le1 (fun i => q i.1) (ofListLift f r x)) = F ((koszulOrder le1 fun i => q i.fst) (ofList [i] 1 * ofListLift f r x)) + ∑ n : (Fin r.length), superCommuteCoef q [r.get n] (List.take (↑n) r) • F (((superCommute fun i => q i.fst) (ofList [i] 1)) (ofListLift f [r.get n] 1)) * F ((koszulOrder le1 fun i => q i.fst) (ofListLift f (r.eraseIdx ↑n) x)) := by match r with | [] => simp only [map_mul, List.length_nil, Finset.univ_eq_empty, List.get_eq_getElem, List.take_nil, List.eraseIdx_nil, Algebra.smul_mul_assoc, Finset.sum_empty, add_zero] rw [ofListLift_empty_smul] simp only [map_smul, koszulOrder_one, map_one, Algebra.mul_smul_comm, mul_one] rw [ofList_singleton, koszulOrder_ι] | r0 :: r => rw [ofListLift_expand, map_sum, Finset.mul_sum, map_sum] let e1 (a : CreateAnnilateSect f (r0 :: r)) : Option (Fin a.toList.length) ≃ Option (Fin (r0 :: r).length) := Equiv.optionCongr (Fin.castOrderIso (CreateAnnilateSect.toList_length a)).toEquiv conv_lhs => rhs intro a rw [ofList_singleton, le_all_mul_koszulOrder_ofList_expand _ _ _ _ _ hi] rw [← (e1 a).symm.sum_comp] rhs intro n rw [Finset.sum_comm] simp only [Fintype.sum_option] congr 1 · simp only [List.length_cons, List.get_eq_getElem, superCommuteCenterOrder, Equiv.optionCongr_symm, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, Equiv.optionCongr_apply, RelIso.coe_fn_toEquiv, Option.map_none', optionEraseZ, one_mul, e1] rw [← map_sum, Finset.mul_sum, ← map_sum] apply congrArg apply congrArg congr funext x rw [ofList_cons_eq_ofList] · congr funext n rw [← (CreateAnnilateSect.extractEquiv n).symm.sum_comp] simp only [List.get_eq_getElem, List.length_cons, Equiv.optionCongr_symm, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, Equiv.optionCongr_apply, RelIso.coe_fn_toEquiv, Option.map_some', Fin.castOrderIso_apply, Algebra.smul_mul_assoc, e1] erw [Finset.sum_product] have h1 (a0 : f (r0 :: r)[↑n]) (a : CreateAnnilateSect f ((r0 :: r).eraseIdx ↑n)) : superCommuteCenterOrder (fun i => q i.fst) ((CreateAnnilateSect.extractEquiv n).symm (a0, a)).toList i F (some (Fin.cast (by simp) n)) = superCommuteCoef q [(r0 :: r).get n] (List.take (↑n) (r0 :: r)) • F (((superCommute fun i => q i.fst) (ofList [i] 1)) (FreeAlgebra.ι ℂ ⟨(r0 :: r).get n, a0⟩)) := by simp only [superCommuteCenterOrder, List.get_eq_getElem, List.length_cons, Fin.coe_cast] erw [CreateAnnilateSect.extractEquiv_symm_toList_get_same] have hsc : superCommuteCoef (fun i => q i.fst) [⟨(r0 :: r).get n, a0⟩] (List.take (↑n) ((CreateAnnilateSect.extractEquiv n).symm (a0, a)).toList) = superCommuteCoef q [(r0 :: r).get n] (List.take (↑n) ((r0 :: r))) := by simp only [superCommuteCoef, List.get_eq_getElem, List.length_cons, Fin.isValue, CreateAnnilateSect.toList_grade_take] rfl erw [hsc] rfl conv_lhs => rhs intro a0 rhs intro a erw [h1] conv_lhs => rhs intro a0 rw [← Finset.mul_sum] conv_lhs => rhs intro a0 enter [2, 2] intro a simp [optionEraseZ] enter [2, 2, 1] rw [← CreateAnnilateSect.eraseIdx_toList] erw [CreateAnnilateSect.extractEquiv_symm_eraseIdx] rw [← Finset.sum_mul] conv_lhs => lhs rw [← Finset.smul_sum] erw [← map_sum, ← map_sum, ← ofListLift_singleton_one] conv_lhs => rhs rw [← map_sum, ← map_sum] simp only [List.get_eq_getElem, List.length_cons, Equiv.symm_apply_apply, Algebra.smul_mul_assoc] erw [← ofListLift_expand] simp only [List.get_eq_getElem, List.length_cons, Algebra.smul_mul_assoc] end end Wick