/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import Mathlib.CategoryTheory.Category.Basic import Mathlib.CategoryTheory.Types import Mathlib.CategoryTheory.Monoidal.Category import Mathlib.CategoryTheory.Comma.Over import Mathlib.CategoryTheory.Core import HepLean.SpaceTime.WeylFermion.Basic import HepLean.SpaceTime.LorentzVector.Complex /-! ## Category over color -/ namespace IndexNotation open CategoryTheory /-- The core of the category of Types over C. -/ def OverColor (C : Type) := CategoryTheory.Core (CategoryTheory.Over C) /-- The instance of `OverColor C` as a groupoid. -/ instance (C : Type) : Groupoid (OverColor C) := coreCategory namespace OverColor namespace Hom variable {C : Type} {f g h : OverColor C} /-- Given a hom in `OverColor C` the underlying equivalence between types. -/ def toEquiv (m : f ⟶ g) : f.left ≃ g.left where toFun := m.hom.left invFun := m.inv.left left_inv := by simpa only [Over.comp_left] using congrFun (congrArg (fun x => x.left) m.hom_inv_id) right_inv := by simpa only [Over.comp_left] using congrFun (congrArg (fun x => x.left) m.inv_hom_id) @[simp] lemma toEquiv_comp (m : f ⟶ g) (n : g ⟶ h) : toEquiv (m ≫ n) = (toEquiv m).trans (toEquiv n) := by ext x simp [toEquiv] rfl lemma toEquiv_symm_apply (m : f ⟶ g) (i : g.left) : f.hom ((toEquiv m).symm i) = g.hom i := by simpa [toEquiv, types_comp] using congrFun m.inv.w i lemma toEquiv_comp_hom (m : f ⟶ g) : g.hom ∘ (toEquiv m) = f.hom := by ext x simpa [types_comp, toEquiv] using congrFun m.hom.w x end Hom instance (C : Type) : MonoidalCategoryStruct (OverColor C) where tensorObj f g := Over.mk (Sum.elim f.hom g.hom) tensorUnit := Over.mk Empty.elim whiskerLeft X Y1 Y2 m := Over.isoMk (Equiv.sumCongr (Equiv.refl X.left) (Hom.toEquiv m)).toIso (by ext x simp only [Functor.id_obj, Functor.const_obj_obj, Over.mk_left, Equiv.toIso_hom, Over.mk_hom, types_comp_apply, Equiv.sumCongr_apply, Equiv.coe_refl] rw [Sum.elim_map, Hom.toEquiv_comp_hom] rfl) whiskerRight m X := Over.isoMk (Equiv.sumCongr (Hom.toEquiv m) (Equiv.refl X.left)).toIso (by ext x simp only [Functor.id_obj, Functor.const_obj_obj, Over.mk_left, Equiv.toIso_hom, Over.mk_hom, types_comp_apply, Equiv.sumCongr_apply, Equiv.coe_refl] rw [Sum.elim_map, Hom.toEquiv_comp_hom] rfl) associator X Y Z := { hom := Over.isoMk (Equiv.sumAssoc X.left Y.left Z.left).toIso (by simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Functor.const_obj_obj, Equiv.sumAssoc, Equiv.toIso_hom, Equiv.coe_fn_mk, types_comp] ext x simp only [Function.comp_apply] cases x with | inl val => cases val with | inl val_1 => simp_all only [Sum.elim_inl] | inr val_2 => simp_all only [Sum.elim_inl, Sum.elim_inr, Function.comp_apply] | inr val_1 => simp_all only [Sum.elim_inr, Function.comp_apply]), inv := (Over.isoMk (Equiv.sumAssoc X.left Y.left Z.left).toIso (by simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Functor.const_obj_obj, Equiv.sumAssoc, Equiv.toIso_hom, Equiv.coe_fn_mk, types_comp] ext x simp only [Function.comp_apply] cases x with | inl val => cases val with | inl val_1 => simp_all only [Sum.elim_inl] | inr val_2 => simp_all only [Sum.elim_inl, Sum.elim_inr, Function.comp_apply] | inr val_1 => simp_all only [Sum.elim_inr, Function.comp_apply])).symm, hom_inv_id := by apply CategoryTheory.Iso.ext erw [CategoryTheory.Iso.trans_hom] simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id] rfl, inv_hom_id := by apply CategoryTheory.Iso.ext erw [CategoryTheory.Iso.trans_hom] simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.inv_hom_id] rfl} leftUnitor X := { hom := Over.isoMk (Equiv.emptySum Empty X.left).toIso inv := (Over.isoMk (Equiv.emptySum Empty X.left).toIso).symm hom_inv_id := by apply CategoryTheory.Iso.ext erw [CategoryTheory.Iso.trans_hom] simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id] rfl, inv_hom_id := by apply CategoryTheory.Iso.ext erw [CategoryTheory.Iso.trans_hom]} rightUnitor X := { hom := Over.isoMk (Equiv.sumEmpty X.left Empty).toIso inv := (Over.isoMk (Equiv.sumEmpty X.left Empty).toIso).symm hom_inv_id := by apply CategoryTheory.Iso.ext erw [CategoryTheory.Iso.trans_hom] simp only [Functor.id_obj, Over.mk_left, Over.mk_hom, Iso.symm_hom, Iso.hom_inv_id] rfl, inv_hom_id := by apply CategoryTheory.Iso.ext erw [CategoryTheory.Iso.trans_hom]} end OverColor end IndexNotation namespace Fermion noncomputable section open Matrix open MatrixGroups open Complex open TensorProduct open IndexNotation open CategoryTheory /-- The colors associated with complex representations of SL(2, ℂ) of intrest to physics. -/ inductive Color | upL : Color | downL : Color | upR : Color | downR : Color | up : Color | down : Color /-- The corresponding representations associated with a color. -/ def colorToRep (c : Color) : Rep ℂ SL(2, ℂ) := match c with | Color.upL => altLeftHanded | Color.downL => leftHanded | Color.upR => altRightHanded | Color.downR => rightHanded | Color.up => Lorentz.complexContr | Color.down => Lorentz.complexCo /-- The linear equivalence between `colorToRep c1` and `colorToRep c2` when `c1 = c2`. -/ def colorToRepCongr {c1 c2 : Color} (h : c1 = c2) : colorToRep c1 ≃ₗ[ℂ] colorToRep c2 where toFun := Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h) invFun := (Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)).symm map_add' x y := by subst h rfl map_smul' x y := by subst h rfl left_inv x := Equiv.symm_apply_apply (Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)) x right_inv x := Equiv.apply_symm_apply (Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)) x lemma colorToRepCongr_comm_ρ {c1 c2 : Color} (h : c1 = c2) (M : SL(2, ℂ)) (x : (colorToRep c1)) : (colorToRepCongr h) ((colorToRep c1).ρ M x) = (colorToRep c2).ρ M ((colorToRepCongr h) x) := by subst h rfl namespace colorFun /-- Given a object in `OverColor Color` the correpsonding tensor product of representations. -/ def obj' (f : OverColor Color) : Rep ℂ SL(2, ℂ) := Rep.of { toFun := fun M => PiTensorProduct.map (fun x => (colorToRep (f.hom x)).ρ M), map_one' := by simp map_mul' := fun M N => by simp only [CategoryTheory.Functor.id_obj, _root_.map_mul] ext x : 2 simp only [LinearMap.compMultilinearMap_apply, PiTensorProduct.map_tprod, LinearMap.mul_apply]} lemma obj'_ρ (f : OverColor Color) (M : SL(2, ℂ)) : (obj' f).ρ M = PiTensorProduct.map (fun x => (colorToRep (f.hom x)).ρ M) := rfl lemma obj'_ρ_tprod (f : OverColor Color) (M : SL(2, ℂ)) (x : (i : f.left) → CoeSort.coe (colorToRep (f.hom i))) : (obj' f).ρ M ((PiTensorProduct.tprod ℂ) x) = PiTensorProduct.tprod ℂ (fun i => (colorToRep (f.hom i)).ρ M (x i)) := by rw [obj'_ρ] change (PiTensorProduct.map fun x => (colorToRep (f.hom x)).ρ M) ((PiTensorProduct.tprod ℂ) x) = (PiTensorProduct.tprod ℂ) fun i => ((colorToRep (f.hom i)).ρ M) (x i) rw [PiTensorProduct.map_tprod] /-- Given a morphism in `OverColor Color` the corresopnding linear equivalence between `obj' _` induced by reindexing. -/ def mapToLinearEquiv' {f g : OverColor Color} (m : f ⟶ g) : (obj' f).V ≃ₗ[ℂ] (obj' g).V := (PiTensorProduct.reindex ℂ (fun x => colorToRep (f.hom x)) (OverColor.Hom.toEquiv m)).trans (PiTensorProduct.congr (fun i => colorToRepCongr (OverColor.Hom.toEquiv_symm_apply m i))) lemma mapToLinearEquiv'_tprod {f g : OverColor Color} (m : f ⟶ g) (x : (i : f.left) → CoeSort.coe (colorToRep (f.hom i))) : mapToLinearEquiv' m (PiTensorProduct.tprod ℂ x) = PiTensorProduct.tprod ℂ (fun i => (colorToRepCongr (OverColor.Hom.toEquiv_symm_apply m i)) (x ((OverColor.Hom.toEquiv m).symm i))) := by rw [mapToLinearEquiv'] simp only [CategoryTheory.Functor.id_obj, LinearEquiv.trans_apply] change (PiTensorProduct.congr fun i => colorToRepCongr _) ((PiTensorProduct.reindex ℂ (fun x => CoeSort.coe (colorToRep (f.hom x))) (OverColor.Hom.toEquiv m)) ((PiTensorProduct.tprod ℂ) x)) = _ rw [PiTensorProduct.reindex_tprod, PiTensorProduct.congr_tprod] rfl /-- Given a morphism in `OverColor Color` the corresopnding map of representations induced by reindexing. -/ def map' {f g : OverColor Color} (m : f ⟶ g) : obj' f ⟶ obj' g where hom := (mapToLinearEquiv' m).toLinearMap comm M := by ext x : 2 refine PiTensorProduct.induction_on' x ?_ (by intro x y hx hy simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp, Function.comp_apply, hy]) intro r x simp only [CategoryTheory.Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod, _root_.map_smul, ModuleCat.coe_comp, Function.comp_apply] apply congrArg change (mapToLinearEquiv' m) (((obj' f).ρ M) ((PiTensorProduct.tprod ℂ) x)) = ((obj' g).ρ M) ((mapToLinearEquiv' m) ((PiTensorProduct.tprod ℂ) x)) rw [mapToLinearEquiv'_tprod, obj'_ρ_tprod] erw [mapToLinearEquiv'_tprod, obj'_ρ_tprod] apply congrArg funext i rw [colorToRepCongr_comm_ρ] end colorFun /-- The functor between `OverColor Color` and `Rep ℂ SL(2, ℂ)` taking a map of colors to the corresponding tensor product representation. -/ def colorFun : OverColor Color ⥤ Rep ℂ SL(2, ℂ) where obj := colorFun.obj' map := colorFun.map' map_id f := by ext x refine PiTensorProduct.induction_on' x (fun r x => ?_) (fun x y hx hy => by simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp, Function.comp_apply, hy]) simp only [CategoryTheory.Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod, _root_.map_smul, Action.id_hom, ModuleCat.id_apply] apply congrArg erw [colorFun.mapToLinearEquiv'_tprod] exact congrArg _ (funext (fun i => rfl)) map_comp {X Y Z} f g := by ext x refine PiTensorProduct.induction_on' x (fun r x => ?_) (fun x y hx hy => by simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp, Function.comp_apply, hy]) simp only [Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod, _root_.map_smul, Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply] apply congrArg rw [colorFun.map', colorFun.map', colorFun.map'] change (colorFun.mapToLinearEquiv' (CategoryTheory.CategoryStruct.comp f g)) ((PiTensorProduct.tprod ℂ) x) = (colorFun.mapToLinearEquiv' g) ((colorFun.mapToLinearEquiv' f) ((PiTensorProduct.tprod ℂ) x)) rw [colorFun.mapToLinearEquiv'_tprod, colorFun.mapToLinearEquiv'_tprod] erw [colorFun.mapToLinearEquiv'_tprod] refine congrArg _ (funext (fun i => ?_)) simp only [colorToRepCongr, Function.comp_apply, Equiv.cast_symm, LinearEquiv.coe_mk, Equiv.cast_apply, cast_cast, cast_inj] rfl end end Fermion