/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.ComplexLorentz.Metrics.Basis import HepLean.Tensors.ComplexLorentz.Basis /-! ## Metrics and basis expansions -/ open IndexNotation open CategoryTheory open MonoidalCategory open Matrix open MatrixGroups open Complex open TensorProduct open IndexNotation open CategoryTheory open TensorTree open OverColor.Discrete noncomputable section namespace complexLorentzTensor /-- The map to color one gets when multiplying left and right metrics. -/ def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘ finSumFinEquiv.symm lemma leftMetric_mul_rightMetric : {εL | α α' ⊗ εR | β β'}ᵀ.tensor = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) - basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) - basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) + basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by rw [prod_tensor_eq_fst (leftMetric_expand_tree)] rw [prod_tensor_eq_snd (rightMetric_expand_tree)] rw [prod_add_both] rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_prod _ _ _] rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_tensor_eq <| prod_smul _ _ _] rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_smul _ _ _] rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_eq_one _ _ (by simp)] rw [add_tensor_eq_fst <| add_tensor_eq_snd <| smul_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _] rw [add_tensor_eq_fst <| add_tensor_eq_fst <| prod_basisVector_tree _ _] rw [add_tensor_eq_fst <| add_tensor_eq_snd <| smul_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_basisVector_tree _ _] rw [← add_assoc] simp only [add_tensor, smul_tensor, tensorNode_tensor] change _ = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) +- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) + basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) congr 1 congr 1 congr 1 all_goals congr funext x fin_cases x <;> rfl lemma leftMetric_mul_rightMetric_tree : {εL | α α' ⊗ εR | β β'}ᵀ.tensor = (TensorTree.add (tensorNode (basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1))) <| TensorTree.add (TensorTree.smul (-1 : ℂ) (tensorNode (basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)))) <| TensorTree.add (TensorTree.smul (-1 : ℂ) (tensorNode (basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)))) <| (tensorNode (basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0)))).tensor := by rw [leftMetric_mul_rightMetric] simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor, smul_tensor, neg_smul, one_smul] rfl end complexLorentzTensor