/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Meta.Informal /-! # Weyl fermions -/ /-! ## The definition of Weyl fermion vector spaces. -/ informal_definition leftHandedWeylFermion where math :≈ "The vector space ℂ^2 carrying the fundamental representation of SL(2,C)." physics :≈ "A Weyl fermion with indices ψ_a." ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf" informal_definition rightHandedWeylFermion where math :≈ "The vector space ℂ^2 carrying the conjguate representation of SL(2,C)." physics :≈ "A Weyl fermion with indices ψ_{dot a}." ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf" informal_definition altLeftHandedWeylFermion where math :≈ "The vector space ℂ^2 carrying the representation of SL(2,C) given by M → (M⁻¹)ᵀ." physics :≈ "A Weyl fermion with indices ψ^a." ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf" informal_definition altRightHandedWeylFermion where math :≈ "The vector space ℂ^2 carrying the representation of SL(2,C) given by M → (M⁻¹)^†." physics :≈ "A Weyl fermion with indices ψ^{dot a}." ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf" /-! ## Equivalences between Weyl fermion vector spaces. -/ informal_definition leftHandedWeylFermionAltEquiv where math :≈ "The linear equiv between leftHandedWeylFermion and altLeftHandedWeylFermion given by multiplying an element of rightHandedWeylFermion by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`." deps :≈ [`leftHandedWeylFermion, `altLeftHandedWeylFermion] informal_lemma leftHandedWeylFermionAltEquiv_equivariant where math :≈ "The linear equiv leftHandedWeylFermionAltEquiv is equivariant with respect to the action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion." deps :≈ [`leftHandedWeylFermionAltEquiv] informal_definition rightHandedWeylFermionAltEquiv where math :≈ "The linear equiv between rightHandedWeylFermion and altRightHandedWeylFermion given by multiplying an element of rightHandedWeylFermion by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`" deps :≈ [`rightHandedWeylFermion, `altRightHandedWeylFermion] informal_lemma rightHandedWeylFermionAltEquiv_equivariant where math :≈ "The linear equiv rightHandedWeylFermionAltEquiv is equivariant with respect to the action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion." deps :≈ [`rightHandedWeylFermionAltEquiv] /-! ## Contraction of Weyl fermions. -/ informal_definition leftAltWeylFermionContraction where math :≈ "The linear map from leftHandedWeylFermion ⊗ altLeftHandedWeylFermion to ℂ given by summing over components of leftHandedWeylFermion and altLeftHandedWeylFermion in the standard basis (i.e. the dot product)." physics :≈ "The contraction of a left-handed Weyl fermion with a right-handed Weyl fermion. In index notation this is ψ_a φ^a." ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf" deps :≈ [``leftHandedWeylFermion, ``altLeftHandedWeylFermion] informal_lemma leftAltWeylFermionContraction_invariant where math :≈ "The contraction leftAltWeylFermionContraction is invariant with respect to the action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion." deps :≈ [`leftAltWeylFermionContraction]