/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license. Authors: Joseph Tooby-Smith -/ import HepLean.StandardModel.Basic import Mathlib.Data.Complex.Exponential import Mathlib.Tactic.Polyrith import Mathlib.Geometry.Manifold.VectorBundle.Basic import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection import Mathlib.Geometry.Manifold.Instances.Real import Mathlib.RepresentationTheory.Basic import Mathlib.Analysis.InnerProductSpace.Basic import Mathlib.Geometry.Manifold.ContMDiff.Product import Mathlib.Analysis.Complex.RealDeriv import Mathlib.Analysis.Calculus.Deriv.Add import Mathlib.Analysis.Calculus.Deriv.Pow import Mathlib.Algebra.QuadraticDiscriminant /-! # The Higgs field This file defines the basic properties for the higgs field in the standard model. -/ universe v u namespace StandardModel noncomputable section open Manifold open Matrix open Complex open ComplexConjugate /-- The complex vector space in which the Higgs field takes values. -/ abbrev higgsVec := EuclideanSpace ℂ (Fin 2) /-- The trivial vector bundle 𝓡² × ℂ². (TODO: Make associated bundle.) -/ abbrev higgsBundle := Bundle.Trivial spaceTime higgsVec instance : SmoothVectorBundle higgsVec higgsBundle (𝓡 4) := Bundle.Trivial.smoothVectorBundle higgsVec 𝓘(ℝ, spaceTime) /-- A higgs field is a smooth section of the higgs bundle. -/ abbrev higgsField : Type := SmoothSection (𝓡 4) higgsVec higgsBundle instance : NormedAddCommGroup (Fin 2 → ℂ) := by exact Pi.normedAddCommGroup section higgsVec /-- The continous linear map from the vector space `higgsVec` to `(Fin 2 → ℂ)` acheived by casting vectors. -/ def higgsVecToFin2ℂ : higgsVec →L[ℝ] (Fin 2 → ℂ) where toFun x := x map_add' x y := by simp map_smul' a x := by simp lemma smooth_higgsVecToFin2ℂ : Smooth 𝓘(ℝ, higgsVec) 𝓘(ℝ, Fin 2 → ℂ) higgsVecToFin2ℂ := ContinuousLinearMap.smooth higgsVecToFin2ℂ /-- Given an element of `gaugeGroup` the linear automorphism of `higgsVec` it gets taken to. -/ @[simps!] noncomputable def higgsRepMap (g : guageGroup) : higgsVec →ₗ[ℂ] higgsVec where toFun S := (g.2.2 ^ 3) • (g.2.1.1 *ᵥ S) map_add' S T := by simp [Matrix.mulVec_add, smul_add] rw [Matrix.mulVec_add, smul_add] map_smul' a S := by simp [Matrix.mulVec_smul] rw [Matrix.mulVec_smul] exact smul_comm _ _ _ /-- The representation of the SM guage group acting on `ℂ²`. -/ noncomputable def higgsRep : Representation ℂ guageGroup higgsVec where toFun := higgsRepMap map_mul' U V := by apply LinearMap.ext intro S simp only [higgsRepMap, Prod.snd_mul, Submonoid.coe_inf, Prod.fst_mul, Submonoid.coe_mul, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply, LinearMap.map_smul_of_tower, mulVec_mulVec] simp [mul_pow, smul_smul, mul_comm] map_one' := by apply LinearMap.ext intro S simp only [higgsRepMap, LinearMap.mul_apply, AddHom.coe_mk, LinearMap.coe_mk] change 1 ^ 3 • (1 *ᵥ _) = _ rw [one_pow, Matrix.one_mulVec] simp only [one_smul, LinearMap.one_apply] end higgsVec namespace higgsField open Complex Real /-- Given a `higgsField`, the corresponding map from `spaceTime` to `higgsVec`. -/ def toHiggsVec (φ : higgsField) : spaceTime → higgsVec := φ lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, higgsVec) φ.toHiggsVec := by intro x0 have h1 := φ.contMDiff x0 rw [Bundle.contMDiffAt_section] at h1 have h2 : (fun x => ((trivializationAt higgsVec (Bundle.Trivial spaceTime higgsVec) x0) { proj := x, snd := φ x }).2) = φ := by rfl simp only [h2] at h1 exact h1 lemma higgsVecToFin2ℂ_toHiggsVec (φ : higgsField) : higgsVecToFin2ℂ ∘ φ.toHiggsVec = φ := by ext x rfl lemma toVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, Fin 2 → ℂ) φ := by rw [← φ.higgsVecToFin2ℂ_toHiggsVec] exact Smooth.comp smooth_higgsVecToFin2ℂ (φ.toHiggsVec_smooth) lemma comp_smooth (φ : higgsField) : ∀ i, Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℂ) (fun (x : spaceTime) => (φ x i)) := by rw [← smooth_pi_space] exact φ.toVec_smooth lemma comp_re_smooth (φ : higgsField) (i : Fin 2): Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (reCLM ∘ (fun (x : spaceTime) => (φ x i))) := Smooth.comp (ContinuousLinearMap.smooth reCLM) (φ.comp_smooth i) lemma comp_im_smooth (φ : higgsField) (i : Fin 2): Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (imCLM ∘ (fun (x : spaceTime) => (φ x i))) := Smooth.comp (ContinuousLinearMap.smooth imCLM) (φ.comp_smooth i) /-- Given a `higgsField`, the map `spaceTime → ℝ` obtained by taking the square norm of the higgs vector. -/ @[simp] def normSq (φ : higgsField) : spaceTime → ℝ := fun x => ( ‖φ x‖ ^ 2) lemma normSq_expand (φ : higgsField) : φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by funext x simp only [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add] rw [@norm_sq_eq_inner ℂ] simp lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) φ.normSq := by rw [normSq_expand] refine Smooth.add ?_ ?_ simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add] refine Smooth.add ?_ ?_ refine Smooth.smul ?_ ?_ exact φ.comp_re_smooth 0 exact φ.comp_re_smooth 0 refine Smooth.smul ?_ ?_ exact φ.comp_im_smooth 0 exact φ.comp_im_smooth 0 simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add] refine Smooth.add ?_ ?_ refine Smooth.smul ?_ ?_ exact φ.comp_re_smooth 1 exact φ.comp_re_smooth 1 refine Smooth.smul ?_ ?_ exact φ.comp_im_smooth 1 exact φ.comp_im_smooth 1 lemma normSq_nonneg (φ : higgsField) (x : spaceTime) : 0 ≤ φ.normSq x := by simp only [normSq, ge_iff_le, norm_nonneg, pow_nonneg] lemma normSq_zero (φ : higgsField) (x : spaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by simp only [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero] /-- The Higgs potential of the form `- μ² * |φ|² + λ * |φ|⁴`. -/ @[simp] def potential (φ : higgsField) (μSq lambda : ℝ ) (x : spaceTime) : ℝ := - μSq * φ.normSq x + lambda * φ.normSq x * φ.normSq x lemma potential_smooth (φ : higgsField) (μSq lambda : ℝ ) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (fun x => φ.potential μSq lambda x) := by simp only [potential, normSq, neg_mul] exact Smooth.add (Smooth.neg (Smooth.smul smooth_const φ.normSq_smooth)) (Smooth.smul (Smooth.smul smooth_const φ.normSq_smooth) φ.normSq_smooth) /-- A higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/ def isConst (Φ : higgsField) : Prop := ∀ x y, Φ x = Φ y /-- Given a vector `ℂ²` the constant higgs field with value equal to that section. -/ noncomputable def const (φ : higgsVec) : higgsField where toFun := fun _ => φ contMDiff_toFun := by intro x rw [Bundle.contMDiffAt_section] exact smoothAt_const lemma normSq_const (φ : higgsVec) : (const φ).normSq = fun x => (norm φ) ^ 2 := by simp only [normSq, const] funext x simp lemma potential_const (φ : higgsVec) (μSq lambda : ℝ ) : (const φ).potential μSq lambda = fun x => - μSq * (norm φ) ^ 2 + lambda * (norm φ) ^ 4 := by unfold potential rw [normSq_const] ring_nf /-- Given a element `v : ℝ` the `higgsField` `(0, v/√2)`. -/ def constStd (v : ℝ) : higgsField := const ![0, v/√2] lemma normSq_constStd (v : ℝ) : (constStd v).normSq = fun x => v ^ 2 / 2 := by simp only [normSq_const, constStd] funext x rw [@PiLp.norm_sq_eq_of_L2] rw [Fin.sum_univ_two] simp /-- The higgs potential as a function of `v : ℝ` when evaluated on a `constStd` field. -/ def potentialConstStd (μSq lambda v : ℝ) : ℝ := - μSq /2 * v ^ 2 + lambda /4 * v ^ 4 lemma potential_constStd (v μSq lambda : ℝ) : (constStd v).potential μSq lambda = fun _ => potentialConstStd μSq lambda v := by unfold potential potentialConstStd rw [normSq_constStd] simp only [neg_mul] ring_nf lemma smooth_potentialConstStd (μSq lambda : ℝ) : Smooth 𝓘(ℝ, ℝ) 𝓘(ℝ, ℝ) (fun v => potentialConstStd μSq lambda v) := by simp only [potentialConstStd] have h1 (v : ℝ) : v ^ 4 = v * v * v * v := by ring simp [sq, h1] refine Smooth.add ?_ ?_ exact Smooth.smul smooth_const (Smooth.smul smooth_id smooth_id) exact Smooth.smul smooth_const (Smooth.smul (Smooth.smul (Smooth.smul smooth_id smooth_id) smooth_id) smooth_id) lemma deriv_potentialConstStd (μSq lambda v : ℝ) : deriv (fun v => potentialConstStd μSq lambda v) v = - μSq * v + lambda * v ^ 3 := by simp only [potentialConstStd] rw [deriv_add, deriv_mul, deriv_mul, deriv_const, deriv_const, deriv_pow, deriv_pow] simp only [zero_mul, Nat.cast_ofNat, Nat.succ_sub_succ_eq_sub, tsub_zero, pow_one, zero_add, neg_mul] ring exact differentiableAt_const _ exact differentiableAt_pow _ exact differentiableAt_const _ exact differentiableAt_pow _ exact DifferentiableAt.const_mul (differentiableAt_pow _) _ exact DifferentiableAt.const_mul (differentiableAt_pow _) _ lemma deriv_potentialConstStd_zero (μSq lambda v : ℝ) (hLam : 0 < lambda) (hv : deriv (fun v => potentialConstStd μSq lambda v) v = 0) : v = 0 ∨ v ^ 2 = μSq/lambda:= by rw [deriv_potentialConstStd] at hv ring_nf at hv have h1 : v * (- μSq + lambda * v ^ 2) = 0 := by ring_nf linear_combination hv simp at h1 cases' h1 with h1 h1 simp_all apply Or.inr field_simp linear_combination h1 lemma potentialConstStd_bounded' (μSq lambda v x : ℝ) (hLam : 0 < lambda) : potentialConstStd μSq lambda v = x → - μSq ^ 2 / (4 * lambda) ≤ x := by simp only [potentialConstStd] intro h let y := v ^2 have h1 : lambda / 4 * y * y + (- μSq / 2) * y + (-x) = 0 := by simp [y] linear_combination h rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1 simp [discrim] at h1 have h2 : 0 ≤ μSq ^ 2 / 2 ^ 2 + 4 * (lambda / 4) * x := by rw [h1] exact sq_nonneg (2 * (lambda / 4) * y + -μSq / 2) ring_nf at h2 rw [← neg_le_iff_add_nonneg'] at h2 have h4 := (div_le_iff' hLam).mpr h2 ring_nf at h4 ring_nf exact h4 simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false] exact OrderIso.mulLeft₀.proof_1 lambda hLam lemma potentialConstStd_bounded (μSq lambda v : ℝ) (hLam : 0 < lambda) : - μSq ^ 2 / (4 * lambda) ≤ potentialConstStd μSq lambda v := by apply potentialConstStd_bounded' μSq lambda v (potentialConstStd μSq lambda v) hLam rfl lemma potentialConstStd_IsMinOn_of_eq_bound (μSq lambda v : ℝ) (hLam : 0 < lambda) (hv : potentialConstStd μSq lambda v = - μSq ^ 2 / (4 * lambda)) : IsMinOn (potentialConstStd μSq lambda) Set.univ v := by rw [isMinOn_univ_iff] intro x rw [hv] exact potentialConstStd_bounded μSq lambda x hLam lemma potentialConstStd_vsq_of_eq_bound (μSq lambda v : ℝ) (hLam : 0 < lambda) : potentialConstStd μSq lambda v = - μSq ^ 2 / (4 * lambda) ↔ v ^ 2 = μSq / lambda := by apply Iff.intro intro h simp [potentialConstStd] at h field_simp at h have h1 : (8 * lambda ^ 2) * v ^ 2 * v ^ 2 + (- 16 * μSq * lambda ) * v ^ 2 + (8 * μSq ^ 2) = 0 := by linear_combination h have hd : discrim (8 * lambda ^ 2) (- 16 * μSq * lambda) (8 * μSq ^ 2) = 0 := by simp [discrim] ring_nf rw [quadratic_eq_zero_iff_of_discrim_eq_zero _ hd] at h1 field_simp at h1 ⊢ ring_nf at h1 have hx : 16 * lambda ≠ 0 := by simp [hLam] exact OrderIso.mulLeft₀.proof_1 lambda hLam apply mul_left_cancel₀ hx ring_nf rw [← h1] ring simp only [ne_eq, mul_eq_zero, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, false_or] exact OrderIso.mulLeft₀.proof_1 lambda hLam intro h simp [potentialConstStd, h] have hv : v ^ 4 = v^2 * v^2 := by ring rw [hv, h] field_simp ring lemma potentialConstStd_IsMinOn (μSq lambda v : ℝ) (hLam : 0 < lambda) (hμSq : 0 ≤ μSq) : IsMinOn (potentialConstStd μSq lambda) Set.univ v ↔ v ^ 2 = μSq / lambda := by apply Iff.intro intro h have h1 := potentialConstStd_bounded μSq lambda v hLam rw [isMinOn_univ_iff] at h let vmin := √(μSq / lambda) have hvmin : vmin ^ 2 = μSq / lambda := by simp [vmin] field_simp have h2 := h vmin have h3 := (potentialConstStd_vsq_of_eq_bound μSq lambda vmin hLam).mpr hvmin rw [h3] at h2 rw [(potentialConstStd_vsq_of_eq_bound μSq lambda v hLam).mp] exact (Real.partialOrder.le_antisymm _ _ h1 h2).symm intro h rw [← potentialConstStd_vsq_of_eq_bound μSq lambda v hLam] at h exact potentialConstStd_IsMinOn_of_eq_bound μSq lambda v hLam h lemma potentialConstStd_muSq_le_zero_nonneg (μSq lambda v : ℝ) (hLam : 0 < lambda) (hμSq : μSq ≤ 0) : 0 ≤ potentialConstStd μSq lambda v := by simp [potentialConstStd] apply add_nonneg field_simp refine div_nonneg ?_ (by simp) refine neg_nonneg.mpr ?_ rw [@mul_nonpos_iff] simp_all apply Or.inr exact sq_nonneg v rw [mul_nonneg_iff] apply Or.inl apply And.intro refine div_nonneg ?_ (by simp) exact le_of_lt hLam have hv : v ^ 4 = (v ^ 2) ^ 2 := by ring rw [hv] exact sq_nonneg (v ^ 2) lemma potentialConstStd_zero_muSq_le_zero (μSq lambda v : ℝ) (hLam : 0 < lambda) (hμSq : μSq ≤ 0) : potentialConstStd μSq lambda v = 0 ↔ v = 0 := by apply Iff.intro · intro h simp [potentialConstStd] at h field_simp at h have h1 : v ^ 2 * ((2 * lambda ) * v ^ 2 + (- 4 * μSq )) = 0 := by linear_combination h simp at h1 cases' h1 with h1 h1 exact h1 have h2 : v ^ 2 = (4 * μSq) / (2 * lambda) := by field_simp ring_nf linear_combination h1 by_cases hμSqZ : μSq = 0 rw [hμSqZ] at h2 simpa using h2 have h3 : ¬ (0 ≤ 4 * μSq / (2 * lambda)) := by rw [div_nonneg_iff] simp only [gt_iff_lt, Nat.ofNat_pos, mul_nonneg_iff_of_pos_left] rw [not_or] apply And.intro simp only [not_and, not_le] intro hm exact (hμSqZ (le_antisymm hμSq hm)).elim simp only [not_and, not_le, gt_iff_lt, Nat.ofNat_pos, mul_pos_iff_of_pos_left] intro _ simp_all only [true_or] rw [← h2] at h3 refine (h3 ?_).elim exact sq_nonneg v · intro h simp [potentialConstStd, h] lemma potentialConstStd_IsMinOn_muSq_le_zero (μSq lambda v : ℝ) (hLam : 0 < lambda) (hμSq : μSq ≤ 0) : IsMinOn (potentialConstStd μSq lambda) Set.univ v ↔ v = 0 := by have hx := (potentialConstStd_zero_muSq_le_zero μSq lambda 0 hLam hμSq) simp at hx apply Iff.intro intro h rw [isMinOn_univ_iff] at h have h1 := potentialConstStd_muSq_le_zero_nonneg μSq lambda v hLam hμSq have h2 := h 0 rw [hx] at h2 exact (potentialConstStd_zero_muSq_le_zero μSq lambda v hLam hμSq).mp (Real.partialOrder.le_antisymm _ _ h1 h2).symm intro h rw [h, isMinOn_univ_iff, hx] intro x exact potentialConstStd_muSq_le_zero_nonneg μSq lambda x hLam hμSq lemma const_isConst (φ : Fin 2 → ℂ) : (const φ).isConst := by intro x _ simp [const] lemma isConst_iff_exists_const (Φ : higgsField) : Φ.isConst ↔ ∃ φ, Φ = const φ := by apply Iff.intro intro h use Φ 0 ext x y rw [← h x 0] rfl intro h intro x y obtain ⟨φ, hφ⟩ := h subst hφ rfl end higgsField end end StandardModel