/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.Tree.Basic /-! ## Products and contractions -/ open IndexNotation open CategoryTheory open MonoidalCategory open OverColor open HepLean.Fin namespace TensorTree variable {S : TensorSpecies} namespace ContrPair variable {n n1 : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} (q : ContrPair c) /-! ## Left contractions. -/ /-- An equivalence needed to perform contraction. For specified `n` and `n1` this reduces to an identity. -/ def leftContrEquivSuccSucc : Fin (n.succ.succ + n1) ≃ Fin ((n + n1).succ.succ) := (Fin.castOrderIso (by omega)).toEquiv /-- An equivalence needed to perform contraction. For specified `n` and `n1` this reduces to an identity. -/ def leftContrEquivSucc : Fin (n.succ + n1) ≃ Fin ((n + n1).succ) := (Fin.castOrderIso (by omega)).toEquiv def leftContrI (n1 : ℕ): Fin ((n + n1).succ.succ) := leftContrEquivSuccSucc <| Fin.castAdd n1 q.i def leftContrJ (n1 : ℕ) : Fin ((n + n1).succ) := leftContrEquivSucc <| Fin.castAdd n1 q.j @[simp] lemma leftContrJ_succAbove_leftContrI : (q.leftContrI n1).succAbove (q.leftContrJ n1) = leftContrEquivSuccSucc (Fin.castAdd n1 (q.i.succAbove q.j)) := by rw [leftContrI, leftContrJ] rw [Fin.ext_iff] simp only [Fin.succAbove, Nat.succ_eq_add_one, leftContrEquivSucc, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, leftContrEquivSuccSucc, Fin.coe_cast, Fin.coe_castAdd] split_ifs <;> rename_i h1 h2 <;> rw [Fin.lt_def] at h1 h2 · simp only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd] · simp_all only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd, not_true_eq_false] · simp_all only [Fin.coe_castSucc, Fin.coe_cast, Fin.coe_castAdd, not_lt, Fin.val_succ, add_right_eq_self, one_ne_zero] omega · simp only [Fin.val_succ, Fin.coe_cast, Fin.coe_castAdd] lemma succAbove_leftContrJ_leftContrI_castAdd (x : Fin n) : (q.leftContrI n1).succAbove ((q.leftContrJ n1).succAbove (Fin.castAdd n1 x)) = leftContrEquivSuccSucc (Fin.castAdd n1 (q.i.succAbove (q.j.succAbove x))) := by rw [Fin.ext_iff] simp [leftContrI, leftContrJ, leftContrEquivSuccSucc, Fin.succAbove] split_ifs <;> rename_i h1 h2 h3 h4 <;> rw [Fin.lt_def] at h1 h2 h3 h4 <;> simp_all [leftContrEquivSucc] <;> omega lemma succAbove_leftContrJ_leftContrI_natAdd (x : Fin n1) : (q.leftContrI n1).succAbove ((q.leftContrJ n1).succAbove (Fin.natAdd n x)) = leftContrEquivSuccSucc (Fin.natAdd n.succ.succ x) := by rw [Fin.ext_iff] simp [leftContrI, leftContrJ, leftContrEquivSuccSucc, Fin.succAbove] split_ifs <;> rename_i h1 h2 <;> rw [Fin.lt_def] at h1 h2 <;> simp_all [leftContrEquivSucc] <;> omega def leftContr : ContrPair ((Sum.elim c c1 ∘ (@finSumFinEquiv n.succ.succ n1).symm.toFun) ∘ leftContrEquivSuccSucc.symm) where i := q.leftContrI n1 j := q.leftContrJ n1 h := by simp only [Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrJ_succAbove_leftContrI, Function.comp_apply, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl] simpa only [leftContrI, Nat.succ_eq_add_one, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl] using q.h lemma leftContr_map_eq : ((Sum.elim c (OverColor.mk c1).hom ∘ finSumFinEquiv.symm.toFun) ∘ ⇑leftContrEquivSuccSucc.symm) ∘ (q.leftContr (c1 := c1)).i.succAbove ∘ (q.leftContr (c1 := c1)).j.succAbove = Sum.elim (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).hom (OverColor.mk c1).hom ∘ ⇑finSumFinEquiv.symm := by funext x simp only [Nat.succ_eq_add_one, Functor.id_obj, mk_hom, Equiv.toFun_as_coe, Function.comp_apply, Functor.const_obj_obj] obtain ⟨k, hk⟩ := finSumFinEquiv.surjective x subst hk match k with | Sum.inl k => simp only [finSumFinEquiv_apply_left, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl, Function.comp_apply] erw [succAbove_leftContrJ_leftContrI_castAdd] simp only [Nat.succ_eq_add_one, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl] | Sum.inr k => simp only [finSumFinEquiv_apply_right, finSumFinEquiv_symm_apply_natAdd, Sum.elim_inr] erw [succAbove_leftContrJ_leftContrI_natAdd] simp only [Nat.succ_eq_add_one, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_natAdd, Sum.elim_inr] set_option maxHeartbeats 0 in lemma contrMap_prod : (q.contrMap ▷ S.F.obj (OverColor.mk c1)) ≫ (S.F.μ _ ((OverColor.mk c1))) ≫ S.F.map (OverColor.equivToIso finSumFinEquiv).hom = (S.F.μ ((OverColor.mk c)) ((OverColor.mk c1))) ≫ S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫ S.F.map (OverColor.equivToIso leftContrEquivSuccSucc).hom ≫ q.leftContr.contrMap ≫ S.F.map (OverColor.mkIso (q.leftContr_map_eq)).hom := by ext1 refine HepLean.PiTensorProduct.induction_tmul (fun p q' => ?_) change (S.F.map (equivToIso finSumFinEquiv).hom).hom ((S.F.μ (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)) (OverColor.mk c1)).hom ((q.contrMap.hom (PiTensorProduct.tprod S.k p)) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q')) = (S.F.map (mkIso _).hom).hom (q.leftContr.contrMap.hom ((S.F.map (equivToIso (@leftContrEquivSuccSucc n n1)).hom).hom ((S.F.map (equivToIso finSumFinEquiv).hom).hom ((S.F.μ (OverColor.mk c) (OverColor.mk c1)).hom ((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))))) conv_lhs => rw [contrMap, TensorSpecies.contrMap_tprod] simp only [TensorSpecies.F_def] conv_rhs => rw [lift.obj_μ_tprod_tmul] simp only [TensorProduct.smul_tmul, TensorProduct.tmul_smul, map_smul] conv_lhs => rw [lift.obj_μ_tprod_tmul] change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom (q.leftContr.contrMap.hom (((lift.obj S.FDiscrete).map (equivToIso leftContrEquivSuccSucc).hom).hom (((lift.obj S.FDiscrete).map (equivToIso finSumFinEquiv).hom).hom ((PiTensorProduct.tprod S.k) _)))) conv_rhs => rw [lift.map_tprod] change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom (q.leftContr.contrMap.hom (((lift.obj S.FDiscrete).map (equivToIso leftContrEquivSuccSucc).hom).hom ( ((PiTensorProduct.tprod S.k) _)))) conv_rhs => rw [lift.map_tprod] change _ = ((lift.obj S.FDiscrete).map (mkIso _).hom).hom (q.leftContr.contrMap.hom ((PiTensorProduct.tprod S.k) _)) conv_rhs => rw [contrMap, TensorSpecies.contrMap_tprod] simp only [TensorProduct.smul_tmul, TensorProduct.tmul_smul, map_smul] congr 1 /- The contraction. -/ · apply congrArg simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, Nat.succ_eq_add_one, mk_hom, Equiv.toFun_as_coe, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.id_obj, instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply] have h1' : ∀ {a a' b c b' c'} (haa' : a = a') (_ : b = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom b') (_ : c = (S.FDiscrete.map (Discrete.eqToHom (by rw [haa']))).hom c'), (S.contr.app a).hom (b ⊗ₜ[S.k] c) = (S.contr.app a').hom (b' ⊗ₜ[S.k] c') := by intro a a' b c b' c' haa' hbc hcc subst haa' simp_all refine h1' ?_ ?_ ?_ · simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl] · erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply] simp only [AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, equivToIso_homToEquiv, LinearEquiv.coe_coe] have h1' {a : Fin n.succ.succ} {b : Fin (n + 1 + 1) ⊕ Fin n1} (h : b = Sum.inl a) : p a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp ))).hom ((lift.discreteSumEquiv S.FDiscrete b) (HepLean.PiTensorProduct.elimPureTensor p q' b)) := by subst h simp only [Nat.succ_eq_add_one, mk_hom, instMonoidalCategoryStruct_tensorObj_hom, Sum.elim_inl, eqToHom_refl, Discrete.functor_map_id, Action.id_hom, Functor.id_obj, ModuleCat.id_apply] rfl apply h1' exact Eq.symm ((fun f => (Equiv.apply_eq_iff_eq_symm_apply f).mp) finSumFinEquiv rfl) · erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply] simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, equivToIso_homToEquiv] change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫ S.FDiscrete.map (Discrete.eqToHom _)).hom _ rw [← S.FDiscrete.map_comp] simp /- a = q.i.succAbove q.j, d = q.i, b = (finSumFinEquiv.symm (leftContrEquivSuccSucc.symm (q.leftContr.i.succAbove q.leftContr.j)) h : c (q.i.succAbove q.j) = S.τ (c q.i) -/ have h1 {a d : Fin n.succ.succ} {b : Fin (n + 1 + 1) ⊕ Fin n1} (h1' : b = Sum.inl a) (h2' : c a = S.τ (c d)) : (S.FDiscrete.map (Discrete.eqToHom h2')).hom (p a) = (S.FDiscrete.map (eqToHom (by subst h1'; simpa using h2'))).hom ((lift.discreteSumEquiv S.FDiscrete b) (HepLean.PiTensorProduct.elimPureTensor p q' b)) := by subst h1' rfl apply h1 erw [leftContrJ_succAbove_leftContrI] simp only [Nat.succ_eq_add_one, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd] /- The tensor. -/ · rw [lift.map_tprod] conv_lhs => erw [lift.map_tprod] apply congrArg funext k simp [lift.discreteFunctorMapEqIso] repeat erw [ModuleCat.id_apply] simp change _ = (S.FDiscrete.map (eqToHom _)).hom ((lift.discreteSumEquiv S.FDiscrete (finSumFinEquiv.symm (leftContrEquivSuccSucc.symm (q.leftContr.i.succAbove (q.leftContr.j.succAbove k))))) (HepLean.PiTensorProduct.elimPureTensor p q' (finSumFinEquiv.symm (leftContrEquivSuccSucc.symm (q.leftContr.i.succAbove (q.leftContr.j.succAbove k)))))) sorry /- l = k, l' = (finSumFinEquiv.symm (leftContrEquivSuccSucc.symm (q.leftContr.i.succAbove (q.leftContr.j.succAbove k)))), -/ /-! ## Right contractions. -/ end ContrPair theorem contr_prod {n n1 : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i)) (t : TensorTree S c) (t1 : TensorTree S c1) : (prod t t1).tensor = sorry :=by sorry end TensorTree