/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.LorentzGroup.Basic /-! # The Proper Lorentz Group The proper Lorentz group is the subgroup of the Lorentz group with determinant `1`. We define the give a series of lemmas related to the determinant of the Lorentz group. -/ noncomputable section open Matrix open Complex open ComplexConjugate namespace LorentzGroup open minkowskiMetric variable {d : ℕ} /-- The determinant of a member of the Lorentz group is `1` or `-1`. -/ lemma det_eq_one_or_neg_one (Λ : 𝓛 d) : Λ.1.det = 1 ∨ Λ.1.det = -1 := by refine mul_self_eq_one_iff.mp ?_ simpa only [det_mul, det_dual, det_one] using congrArg det ((mem_iff_self_mul_dual).mp Λ.2) local notation "ℤ₂" => Multiplicative (ZMod 2) instance : TopologicalSpace ℤ₂ := instTopologicalSpaceFin instance : DiscreteTopology ℤ₂ := by exact forall_open_iff_discrete.mp fun _ => trivial instance : TopologicalGroup ℤ₂ := TopologicalGroup.mk /-- A continuous function from `({-1, 1} : Set ℝ)` to `ℤ₂`. -/ @[simps!] def coeForℤ₂ : C(({-1, 1} : Set ℝ), ℤ₂) where toFun x := if x = ⟨1, Set.mem_insert_of_mem (-1) rfl⟩ then Additive.toMul 0 else Additive.toMul (1 : ZMod 2) continuous_toFun := continuous_of_discreteTopology /-- The continuous map taking a Lorentz matrix to its determinant. -/ def detContinuous : C(𝓛 d, ℤ₂) := ContinuousMap.comp coeForℤ₂ { toFun := fun Λ => ⟨Λ.1.det, Or.symm (LorentzGroup.det_eq_one_or_neg_one _)⟩, continuous_toFun := by refine Continuous.subtype_mk ?_ _ exact Continuous.matrix_det $ Continuous.comp' (continuous_iff_le_induced.mpr fun U a => a) continuous_id' } lemma detContinuous_eq_one (Λ : LorentzGroup d) : detContinuous Λ = Additive.toMul 0 ↔ Λ.1.det = 1 := by simp only [detContinuous, ContinuousMap.comp_apply, ContinuousMap.coe_mk, coeForℤ₂_apply, Subtype.mk.injEq, ite_eq_left_iff, toMul_eq_one] simp only [toMul_zero, ite_eq_left_iff, toMul_eq_one] refine Iff.intro (fun h => ?_) (fun h => ?_) · by_contra hn have h' := h hn change (1 : Fin 2) = (0 : Fin 2) at h' simp only [Fin.isValue, one_ne_zero] at h' · intro h' exact False.elim (h' h) lemma detContinuous_eq_zero (Λ : LorentzGroup d) : detContinuous Λ = Additive.toMul (1 : ZMod 2) ↔ Λ.1.det = - 1 := by simp only [detContinuous, ContinuousMap.comp_apply, ContinuousMap.coe_mk, coeForℤ₂_apply, Subtype.mk.injEq, Nat.reduceAdd] refine Iff.intro (fun h => ?_) (fun h => ?_) · by_contra hn rw [if_pos] at h · change (0 : Fin 2) = (1 : Fin 2) at h simp only [Fin.isValue, zero_ne_one] at h · cases' det_eq_one_or_neg_one Λ with h2 h2 · simp_all only [ite_true] · simp_all only [not_true_eq_false] · rw [if_neg] · rfl · cases' det_eq_one_or_neg_one Λ with h2 h2 · rw [h] linarith · linarith lemma detContinuous_eq_iff_det_eq (Λ Λ' : LorentzGroup d) : detContinuous Λ = detContinuous Λ' ↔ Λ.1.det = Λ'.1.det := by cases' det_eq_one_or_neg_one Λ with h1 h1 · rw [h1, (detContinuous_eq_one Λ).mpr h1] cases' det_eq_one_or_neg_one Λ' with h2 h2 · rw [h2, (detContinuous_eq_one Λ').mpr h2] simp only [toMul_zero] · rw [h2, (detContinuous_eq_zero Λ').mpr h2] erw [Additive.toMul.apply_eq_iff_eq] change (0 : Fin 2) = (1 : Fin 2) ↔ _ simp only [Fin.isValue, zero_ne_one, false_iff] linarith · rw [h1, (detContinuous_eq_zero Λ).mpr h1] cases' det_eq_one_or_neg_one Λ' with h2 h2 · rw [h2, (detContinuous_eq_one Λ').mpr h2] erw [Additive.toMul.apply_eq_iff_eq] change (1 : Fin 2) = (0 : Fin 2) ↔ _ simp only [Fin.isValue, one_ne_zero, false_iff] linarith · rw [h2, (detContinuous_eq_zero Λ').mpr h2] simp only [Nat.reduceAdd] /-- The representation taking a Lorentz matrix to its determinant. -/ @[simps!] def detRep : 𝓛 d →* ℤ₂ where toFun Λ := detContinuous Λ map_one' := by simp only [detContinuous, ContinuousMap.comp_apply, ContinuousMap.coe_mk, lorentzGroupIsGroup_one_coe, det_one, coeForℤ₂_apply, ↓reduceIte] map_mul' Λ1 Λ2 := by simp only [Submonoid.coe_mul, Subgroup.coe_toSubmonoid, Units.val_mul, det_mul, toMul_zero, mul_ite, mul_one, ite_mul, one_mul] cases' det_eq_one_or_neg_one Λ1 with h1 h1 · rw [(detContinuous_eq_one Λ1).mpr h1] cases' det_eq_one_or_neg_one Λ2 with h2 h2 · rw [(detContinuous_eq_one Λ2).mpr h2] apply (detContinuous_eq_one _).mpr simp only [lorentzGroupIsGroup_mul_coe, det_mul, h1, h2, mul_one] · rw [(detContinuous_eq_zero Λ2).mpr h2] apply (detContinuous_eq_zero _).mpr simp only [lorentzGroupIsGroup_mul_coe, det_mul, h1, h2, mul_neg, mul_one] · rw [(detContinuous_eq_zero Λ1).mpr h1] cases' det_eq_one_or_neg_one Λ2 with h2 h2 · rw [(detContinuous_eq_one Λ2).mpr h2] apply (detContinuous_eq_zero _).mpr simp only [lorentzGroupIsGroup_mul_coe, det_mul, h1, h2, mul_one] · rw [(detContinuous_eq_zero Λ2).mpr h2] apply (detContinuous_eq_one _).mpr simp only [lorentzGroupIsGroup_mul_coe, det_mul, h1, h2, mul_neg, mul_one, neg_neg] lemma detRep_continuous : Continuous (@detRep d) := detContinuous.2 lemma det_on_connected_component {Λ Λ' : LorentzGroup d} (h : Λ' ∈ connectedComponent Λ) : Λ.1.det = Λ'.1.det := by obtain ⟨s, hs, hΛ'⟩ := h let f : ContinuousMap s ℤ₂ := ContinuousMap.restrict s detContinuous haveI : PreconnectedSpace s := isPreconnected_iff_preconnectedSpace.mp hs.1 simpa [f, detContinuous_eq_iff_det_eq] using (@IsPreconnected.subsingleton ℤ₂ _ _ _ (isPreconnected_range f.2)) (Set.mem_range_self ⟨Λ, hs.2⟩) (Set.mem_range_self ⟨Λ', hΛ'⟩) lemma detRep_on_connected_component {Λ Λ' : LorentzGroup d} (h : Λ' ∈ connectedComponent Λ) : detRep Λ = detRep Λ' := by simp only [detRep_apply, detContinuous, ContinuousMap.comp_apply, ContinuousMap.coe_mk, coeForℤ₂_apply, Subtype.mk.injEq] rw [det_on_connected_component h] lemma det_of_joined {Λ Λ' : LorentzGroup d} (h : Joined Λ Λ') : Λ.1.det = Λ'.1.det := det_on_connected_component $ pathComponent_subset_component _ h /-- A Lorentz Matrix is proper if its determinant is 1. -/ @[simp] def IsProper (Λ : LorentzGroup d) : Prop := Λ.1.det = 1 instance : DecidablePred (@IsProper d) := by intro Λ apply Real.decidableEq lemma IsProper_iff (Λ : LorentzGroup d) : IsProper Λ ↔ detRep Λ = 1 := by rw [show 1 = detRep 1 from Eq.symm (MonoidHom.map_one detRep), detRep_apply, detRep_apply, detContinuous_eq_iff_det_eq] simp only [IsProper, lorentzGroupIsGroup_one_coe, det_one] lemma id_IsProper : @IsProper d 1 := by simp [IsProper] lemma isProper_on_connected_component {Λ Λ' : LorentzGroup d} (h : Λ' ∈ connectedComponent Λ) : IsProper Λ ↔ IsProper Λ' := by simp only [IsProper] rw [det_on_connected_component h] end LorentzGroup end