/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Lorentz.Weyl.Basic /-! # Contraction of Weyl fermions We define the contraction of Weyl fermions. -/ namespace Fermion noncomputable section open Matrix open MatrixGroups open Complex open TensorProduct /-! ## Contraction of Weyl fermions. -/ open CategoryTheory.MonoidalCategory /-- The bi-linear map corresponding to contraction of a left-handed Weyl fermion with a alt-left-handed Weyl fermion. -/ def leftAltBi : leftHanded →ₗ[ℂ] altLeftHanded →ₗ[ℂ] ℂ where toFun ψ := { toFun := fun φ => ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ, map_add' := by intro φ φ' simp only [map_add] rw [dotProduct_add] map_smul' := by intro r φ simp only [LinearEquiv.map_smul] rw [dotProduct_smul] rfl} map_add' ψ ψ':= by refine LinearMap.ext (fun φ => ?_) simp only [map_add, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.add_apply] rw [add_dotProduct] map_smul' r ψ := by refine LinearMap.ext (fun φ => ?_) simp only [LinearEquiv.map_smul, LinearMap.coe_mk, AddHom.coe_mk] rw [smul_dotProduct] rfl /-- The bi-linear map corresponding to contraction of a alt-left-handed Weyl fermion with a left-handed Weyl fermion. -/ def altLeftBi : altLeftHanded →ₗ[ℂ] leftHanded →ₗ[ℂ] ℂ where toFun ψ := { toFun := fun φ => ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ, map_add' := by intro φ φ' simp only [map_add] rw [dotProduct_add] map_smul' := by intro r φ simp only [LinearEquiv.map_smul] rw [dotProduct_smul] rfl} map_add' ψ ψ':= by refine LinearMap.ext (fun φ => ?_) simp only [map_add, add_dotProduct, vec2_dotProduct, Fin.isValue, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.add_apply] map_smul' ψ ψ' := by refine LinearMap.ext (fun φ => ?_) simp only [_root_.map_smul, smul_dotProduct, vec2_dotProduct, Fin.isValue, smul_eq_mul, LinearMap.coe_mk, AddHom.coe_mk, RingHom.id_apply, LinearMap.smul_apply] /-- The bi-linear map corresponding to contraction of a right-handed Weyl fermion with a alt-right-handed Weyl fermion. -/ def rightAltBi : rightHanded →ₗ[ℂ] altRightHanded →ₗ[ℂ] ℂ where toFun ψ := { toFun := fun φ => ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ, map_add' := by intro φ φ' simp only [map_add] rw [dotProduct_add] map_smul' := by intro r φ simp only [LinearEquiv.map_smul] rw [dotProduct_smul] rfl} map_add' ψ ψ':= by refine LinearMap.ext (fun φ => ?_) simp only [map_add, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.add_apply] rw [add_dotProduct] map_smul' r ψ := by refine LinearMap.ext (fun φ => ?_) simp only [LinearEquiv.map_smul, LinearMap.coe_mk, AddHom.coe_mk] rw [smul_dotProduct] rfl /-- The bi-linear map corresponding to contraction of a alt-right-handed Weyl fermion with a right-handed Weyl fermion. -/ def altRightBi : altRightHanded →ₗ[ℂ] rightHanded →ₗ[ℂ] ℂ where toFun ψ := { toFun := fun φ => ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ, map_add' := by intro φ φ' simp only [map_add] rw [dotProduct_add] map_smul' := by intro r φ simp only [LinearEquiv.map_smul] rw [dotProduct_smul] rfl} map_add' ψ ψ':= by refine LinearMap.ext (fun φ => ?_) simp only [map_add, add_dotProduct, vec2_dotProduct, Fin.isValue, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.add_apply] map_smul' ψ ψ' := by refine LinearMap.ext (fun φ => ?_) simp only [_root_.map_smul, smul_dotProduct, vec2_dotProduct, Fin.isValue, smul_eq_mul, LinearMap.coe_mk, AddHom.coe_mk, RingHom.id_apply, LinearMap.smul_apply] /-- The linear map from leftHandedWeyl ⊗ altLeftHandedWeyl to ℂ given by summing over components of leftHandedWeyl and altLeftHandedWeyl in the standard basis (i.e. the dot product). Physically, the contraction of a left-handed Weyl fermion with a alt-left-handed Weyl fermion. In index notation this is ψ^a φ_a. -/ def leftAltContraction : leftHanded ⊗ altLeftHanded ⟶ 𝟙_ (Rep ℂ SL(2,ℂ)) where hom := ModuleCat.ofHom <| TensorProduct.lift leftAltBi comm M := ModuleCat.hom_ext <| TensorProduct.ext' fun ψ φ => by change (M.1 *ᵥ ψ.toFin2ℂ) ⬝ᵥ (M.1⁻¹ᵀ *ᵥ φ.toFin2ℂ) = ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ rw [dotProduct_mulVec, vecMul_transpose, mulVec_mulVec] simp lemma leftAltContraction_hom_tmul (ψ : leftHanded) (φ : altLeftHanded) : leftAltContraction.hom (ψ ⊗ₜ φ) = ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ := by rfl lemma leftAltContraction_basis (i j : Fin 2) : leftAltContraction.hom (leftBasis i ⊗ₜ altLeftBasis j) = if i.1 = j.1 then (1 : ℂ) else 0 := by rw [leftAltContraction_hom_tmul] simp only [Action.instMonoidalCategory_tensorUnit_V, leftBasis_toFin2ℂ, altLeftBasis_toFin2ℂ, dotProduct_single, mul_one] rw [Pi.single_apply] simp only [Fin.ext_iff] refine ite_congr ?h₁ (congrFun rfl) (congrFun rfl) exact Eq.propIntro (fun a => id (Eq.symm a)) fun a => id (Eq.symm a) /-- The linear map from altLeftHandedWeyl ⊗ leftHandedWeyl to ℂ given by summing over components of altLeftHandedWeyl and leftHandedWeyl in the standard basis (i.e. the dot product). Physically, the contraction of a alt-left-handed Weyl fermion with a left-handed Weyl fermion. In index notation this is φ_a ψ^a. -/ def altLeftContraction : altLeftHanded ⊗ leftHanded ⟶ 𝟙_ (Rep ℂ SL(2,ℂ)) where hom := ModuleCat.ofHom <| TensorProduct.lift altLeftBi comm M := ModuleCat.hom_ext <| TensorProduct.ext' fun φ ψ => by change (M.1⁻¹ᵀ *ᵥ φ.toFin2ℂ) ⬝ᵥ (M.1 *ᵥ ψ.toFin2ℂ) = φ.toFin2ℂ ⬝ᵥ ψ.toFin2ℂ rw [dotProduct_mulVec, mulVec_transpose, vecMul_vecMul] simp lemma altLeftContraction_hom_tmul (φ : altLeftHanded) (ψ : leftHanded) : altLeftContraction.hom (φ ⊗ₜ ψ) = φ.toFin2ℂ ⬝ᵥ ψ.toFin2ℂ := by rfl lemma altLeftContraction_basis (i j : Fin 2) : altLeftContraction.hom (altLeftBasis i ⊗ₜ leftBasis j) = if i.1 = j.1 then (1 : ℂ) else 0 := by rw [altLeftContraction_hom_tmul] simp only [Action.instMonoidalCategory_tensorUnit_V, leftBasis_toFin2ℂ, altLeftBasis_toFin2ℂ, dotProduct_single, mul_one] rw [Pi.single_apply] simp only [Fin.ext_iff] refine ite_congr ?h₁ (congrFun rfl) (congrFun rfl) exact Eq.propIntro (fun a => id (Eq.symm a)) fun a => id (Eq.symm a) /-- The linear map from `rightHandedWeyl ⊗ altRightHandedWeyl` to `ℂ` given by summing over components of `rightHandedWeyl` and `altRightHandedWeyl` in the standard basis (i.e. the dot product). The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion. In index notation this is `ψ^{dot a} φ_{dot a}`. -/ def rightAltContraction : rightHanded ⊗ altRightHanded ⟶ 𝟙_ (Rep ℂ SL(2,ℂ)) where hom := ModuleCat.ofHom <| TensorProduct.lift rightAltBi comm M := ModuleCat.hom_ext <| TensorProduct.ext' fun ψ φ => by change (M.1.map star *ᵥ ψ.toFin2ℂ) ⬝ᵥ (M.1⁻¹.conjTranspose *ᵥ φ.toFin2ℂ) = ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ have h1 : (M.1)⁻¹ᴴ = ((M.1)⁻¹.map star)ᵀ := by rfl rw [dotProduct_mulVec, h1, vecMul_transpose, mulVec_mulVec] have h2 : ((M.1)⁻¹.map star * (M.1).map star) = 1 := by refine transpose_inj.mp ?_ rw [transpose_mul] change M.1.conjTranspose * (M.1)⁻¹.conjTranspose = 1ᵀ rw [← @conjTranspose_mul] simp only [SpecialLinearGroup.det_coe, isUnit_iff_ne_zero, ne_eq, one_ne_zero, not_false_eq_true, nonsing_inv_mul, conjTranspose_one, transpose_one] rw [h2] simp only [one_mulVec, vec2_dotProduct, Fin.isValue, RightHandedModule.toFin2ℂEquiv_apply, AltRightHandedModule.toFin2ℂEquiv_apply] lemma rightAltContraction_hom_tmul (ψ : rightHanded) (φ : altRightHanded) : rightAltContraction.hom (ψ ⊗ₜ φ) = ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ := by rfl lemma rightAltContraction_basis (i j : Fin 2) : rightAltContraction.hom (rightBasis i ⊗ₜ altRightBasis j) = if i.1 = j.1 then (1 : ℂ) else 0 := by rw [rightAltContraction_hom_tmul] simp only [Action.instMonoidalCategory_tensorUnit_V, rightBasis_toFin2ℂ, altRightBasis_toFin2ℂ, dotProduct_single, mul_one] rw [Pi.single_apply] simp only [Fin.ext_iff] refine ite_congr ?h₁ (congrFun rfl) (congrFun rfl) exact Eq.propIntro (fun a => id (Eq.symm a)) fun a => id (Eq.symm a) /-- The linear map from altRightHandedWeyl ⊗ rightHandedWeyl to ℂ given by summing over components of altRightHandedWeyl and rightHandedWeyl in the standard basis (i.e. the dot product). The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion. In index notation this is φ_{dot a} ψ^{dot a}. -/ def altRightContraction : altRightHanded ⊗ rightHanded ⟶ 𝟙_ (Rep ℂ SL(2,ℂ)) where hom := ModuleCat.ofHom <| TensorProduct.lift altRightBi comm M := ModuleCat.hom_ext <| TensorProduct.ext' fun φ ψ => by change (M.1⁻¹.conjTranspose *ᵥ φ.toFin2ℂ) ⬝ᵥ (M.1.map star *ᵥ ψ.toFin2ℂ) = φ.toFin2ℂ ⬝ᵥ ψ.toFin2ℂ have h1 : (M.1)⁻¹ᴴ = ((M.1)⁻¹.map star)ᵀ := by rfl rw [dotProduct_mulVec, h1, mulVec_transpose, vecMul_vecMul] have h2 : ((M.1)⁻¹.map star * (M.1).map star) = 1 := by refine transpose_inj.mp ?_ rw [transpose_mul] change M.1.conjTranspose * (M.1)⁻¹.conjTranspose = 1ᵀ rw [← @conjTranspose_mul] simp only [SpecialLinearGroup.det_coe, isUnit_iff_ne_zero, ne_eq, one_ne_zero, not_false_eq_true, nonsing_inv_mul, conjTranspose_one, transpose_one] rw [h2] simp only [vecMul_one, vec2_dotProduct, Fin.isValue, AltRightHandedModule.toFin2ℂEquiv_apply, RightHandedModule.toFin2ℂEquiv_apply] lemma altRightContraction_hom_tmul (φ : altRightHanded) (ψ : rightHanded) : altRightContraction.hom (φ ⊗ₜ ψ) = φ.toFin2ℂ ⬝ᵥ ψ.toFin2ℂ := by rfl lemma altRightContraction_basis (i j : Fin 2) : altRightContraction.hom (altRightBasis i ⊗ₜ rightBasis j) = if i.1 = j.1 then (1 : ℂ) else 0 := by rw [altRightContraction_hom_tmul] simp only [Action.instMonoidalCategory_tensorUnit_V, rightBasis_toFin2ℂ, altRightBasis_toFin2ℂ, dotProduct_single, mul_one] rw [Pi.single_apply] simp only [Fin.ext_iff] refine ite_congr ?h₁ (congrFun rfl) (congrFun rfl) exact Eq.propIntro (fun a => id (Eq.symm a)) fun a => id (Eq.symm a) /-! ## Symmetry properties -/ lemma leftAltContraction_tmul_symm (ψ : leftHanded) (φ : altLeftHanded) : leftAltContraction.hom (ψ ⊗ₜ[ℂ] φ) = altLeftContraction.hom (φ ⊗ₜ[ℂ] ψ) := by rw [leftAltContraction_hom_tmul, altLeftContraction_hom_tmul, dotProduct_comm] lemma altLeftContraction_tmul_symm (φ : altLeftHanded) (ψ : leftHanded) : altLeftContraction.hom (φ ⊗ₜ[ℂ] ψ) = leftAltContraction.hom (ψ ⊗ₜ[ℂ] φ) := by rw [leftAltContraction_tmul_symm] lemma rightAltContraction_tmul_symm (ψ : rightHanded) (φ : altRightHanded) : rightAltContraction.hom (ψ ⊗ₜ[ℂ] φ) = altRightContraction.hom (φ ⊗ₜ[ℂ] ψ) := by rw [rightAltContraction_hom_tmul, altRightContraction_hom_tmul, dotProduct_comm] lemma altRightContraction_tmul_symm (φ : altRightHanded) (ψ : rightHanded) : altRightContraction.hom (φ ⊗ₜ[ℂ] ψ) = rightAltContraction.hom (ψ ⊗ₜ[ℂ] φ) := by rw [rightAltContraction_tmul_symm] end end Fermion