/- Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.PerturbationTheory.WickContraction.Sign.Basic import HepLean.PerturbationTheory.FieldOpAlgebra.TimeContraction /-! # Time contractions -/ open FieldSpecification variable {𝓕 : FieldSpecification} namespace WickContraction variable {n : ℕ} (c : WickContraction n) open HepLean.List open FieldOpAlgebra /-- Given a Wick contraction `φsΛ` associated with a list `φs`, the product of all time-contractions of pairs of contracted elements in `φs`, as a member of the center of `𝓞.A`. -/ noncomputable def staticContract {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) : Subalgebra.center ℂ 𝓕.FieldOpAlgebra := ∏ (a : φsΛ.1), ⟨[anPart (φs.get (φsΛ.fstFieldOfContract a)), ofFieldOp (φs.get (φsΛ.sndFieldOfContract a))]ₛ, superCommute_anPart_ofFieldOp_mem_center _ _⟩ @[simp] lemma staticContract_insert_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) : (φsΛ ↩Λ φ i none).staticContract = φsΛ.staticContract := by rw [staticContract, insertAndContract_none_prod_contractions] congr ext a simp /-- For `φsΛ` a Wick contraction for `φs = φ₀…φₙ`, the time contraction `(φsΛ ↩Λ φ i (some j)).timeContract 𝓞` is equal to the multiple of - the time contraction of `φ` with `φⱼ` if `i < i.succAbove j` else `φⱼ` with `φ`. - `φsΛ.timeContract 𝓞`. This follows from the fact that `(φsΛ ↩Λ φ i (some j))` has one more contracted pair than `φsΛ`, corresponding to `φ` contracted with `φⱼ`. The order depends on whether we insert `φ` before or after `φⱼ`. -/ lemma staticContract_insertAndContract_some (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) : (φsΛ ↩Λ φ i (some j)).staticContract = (if i < i.succAbove j then ⟨[anPart φ, ofFieldOp φs[j.1]]ₛ, superCommute_anPart_ofFieldOp_mem_center _ _⟩ else ⟨[anPart φs[j.1], ofFieldOp φ]ₛ, superCommute_anPart_ofFieldOp_mem_center _ _⟩) * φsΛ.staticContract := by rw [staticContract, insertAndContract_some_prod_contractions] congr 1 · simp only [Nat.succ_eq_add_one, insertAndContract_fstFieldOfContract_some_incl, finCongr_apply, List.get_eq_getElem, insertAndContract_sndFieldOfContract_some_incl, Fin.getElem_fin] split · simp · simp · congr ext a simp open FieldStatistic lemma staticContract_insert_some_of_lt (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : φsΛ.uncontracted) (hik : i < i.succAbove k) : (φsΛ ↩Λ φ i (some k)).staticContract = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (φsΛ.uncontracted.filter (fun x => x < k))⟩) • (contractStateAtIndex φ [φsΛ]ᵘᶜ ((uncontractedFieldOpEquiv φs φsΛ) (some k)) * φsΛ.staticContract) := by rw [staticContract_insertAndContract_some] simp only [Nat.succ_eq_add_one, Fin.getElem_fin, ite_mul, instCommGroup.eq_1, contractStateAtIndex, uncontractedFieldOpEquiv, Equiv.optionCongr_apply, Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply, Fin.coe_cast, List.getElem_map, uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem, Algebra.smul_mul_assoc, uncontractedListGet] · simp only [hik, ↓reduceIte, MulMemClass.coe_mul] trans (1 : ℂ) • ((superCommute (anPart φ)) (ofFieldOp φs[k.1]) * ↑φsΛ.staticContract) · simp simp only [smul_smul] congr 1 have h1 : ofList 𝓕.fieldOpStatistic (List.take (↑(φsΛ.uncontractedIndexEquiv.symm k)) (List.map φs.get φsΛ.uncontractedList)) = (𝓕 |>ₛ ⟨φs.get, (Finset.filter (fun x => x < k) φsΛ.uncontracted)⟩) := by simp only [ofFinset] congr rw [← List.map_take] congr rw [take_uncontractedIndexEquiv_symm] rw [filter_uncontractedList] rw [h1] simp only [exchangeSign_mul_self] lemma staticContract_of_not_gradingCompliant (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length) (h : ¬ GradingCompliant φs φsΛ) : φsΛ.staticContract = 0 := by rw [staticContract] simp only [GradingCompliant, Fin.getElem_fin, Subtype.forall, not_forall] at h obtain ⟨a, ha⟩ := h obtain ⟨ha, ha2⟩ := ha apply Finset.prod_eq_zero (i := ⟨a, ha⟩) simp only [Finset.univ_eq_attach, Finset.mem_attach] apply Subtype.eq simp only [List.get_eq_getElem, ZeroMemClass.coe_zero] rw [superCommute_anPart_ofFieldOpF_diff_grade_zero] simp [ha2] end WickContraction