/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.PerturbationTheory.Wick.Signs.KoszulSignInsert /-! # Koszul sign -/ namespace Wick open HepLean.List open FieldStatistic variable {𝓕 : Type} (q : 𝓕 → FieldStatistic) (le : 𝓕 → 𝓕 → Prop) [DecidableRel le] /-- Gives a factor of `- 1` for every fermion-fermion (`q` is `1`) crossing that occurs when sorting a list of based on `r`. -/ def koszulSign (q : 𝓕 → FieldStatistic) (le : 𝓕 → 𝓕 → Prop) [DecidableRel le] : List 𝓕 → ℂ | [] => 1 | a :: l => koszulSignInsert q le a l * koszulSign q le l lemma koszulSign_mul_self (l : List 𝓕) : koszulSign q le l * koszulSign q le l = 1 := by induction l with | nil => simp [koszulSign] | cons a l ih => simp only [koszulSign] trans (koszulSignInsert q le a l * koszulSignInsert q le a l) * (koszulSign q le l * koszulSign q le l) · ring · rw [ih, koszulSignInsert_mul_self, mul_one] @[simp] lemma koszulSign_freeMonoid_of (φ : 𝓕) : koszulSign q le (FreeMonoid.of φ) = 1 := by simp only [koszulSign, mul_one] rfl lemma koszulSignInsert_erase_boson {𝓕 : Type} (q : 𝓕 → FieldStatistic) (le : 𝓕 → 𝓕 → Prop) [DecidableRel le] (φ : 𝓕) : (φs : List 𝓕) → (n : Fin φs.length) → (heq : q (φs.get n) = bosonic) → koszulSignInsert q le φ (φs.eraseIdx n) = koszulSignInsert q le φ φs | [], _, _ => by simp | r1 :: r, ⟨0, h⟩, hr => by simp only [List.eraseIdx_zero, List.tail_cons] simp only [List.length_cons, Fin.zero_eta, List.get_eq_getElem, Fin.val_zero, List.getElem_cons_zero] at hr rw [koszulSignInsert] simp [hr] | r1 :: r, ⟨n + 1, h⟩, hr => by simp only [List.eraseIdx_cons_succ] rw [koszulSignInsert, koszulSignInsert] rw [koszulSignInsert_erase_boson q le φ r ⟨n, Nat.succ_lt_succ_iff.mp h⟩ hr] lemma koszulSign_erase_boson {𝓕 : Type} (q : 𝓕 → FieldStatistic) (le : 𝓕 → 𝓕 → Prop) [DecidableRel le] : (φs : List 𝓕) → (n : Fin φs.length) → (heq : q (φs.get n) = bosonic) → koszulSign q le (φs.eraseIdx n) = koszulSign q le φs | [], _ => by simp | φ :: φs, ⟨0, h⟩ => by simp only [List.length_cons, Fin.zero_eta, List.get_eq_getElem, Fin.val_zero, List.getElem_cons_zero, Fin.isValue, List.eraseIdx_zero, List.tail_cons, koszulSign] intro h rw [koszulSignInsert_boson] simp only [one_mul] exact h | φ :: φs, ⟨n + 1, h⟩ => by simp only [List.length_cons, List.get_eq_getElem, List.getElem_cons_succ, Fin.isValue, List.eraseIdx_cons_succ] intro h' rw [koszulSign, koszulSign, koszulSign_erase_boson q le φs ⟨n, Nat.succ_lt_succ_iff.mp h⟩] congr 1 rw [koszulSignInsert_erase_boson q le φ φs ⟨n, Nat.succ_lt_succ_iff.mp h⟩ h'] exact h' lemma koszulSign_insertIdx [IsTotal 𝓕 le] [IsTrans 𝓕 le] (φ : 𝓕) : (φs : List 𝓕) → (n : ℕ) → (hn : n ≤ φs.length) → koszulSign q le (List.insertIdx n φ φs) = insertSign q n φ φs * koszulSign q le φs * insertSign q (insertionSortEquiv le (List.insertIdx n φ φs) ⟨n, by rw [List.length_insertIdx, if_pos hn] exact Nat.succ_le_succ hn⟩) φ (List.insertionSort le (List.insertIdx n φ φs)) | [], 0, h => by simp [koszulSign, insertSign, superCommuteCoef, koszulSignInsert] | [], n + 1, h => by simp at h | φ1 :: φs, 0, h => by simp only [List.insertIdx_zero, List.insertionSort, List.length_cons, Fin.zero_eta] rw [koszulSign] trans koszulSign q le (φ1 :: φs) * koszulSignInsert q le φ (φ1 :: φs) ring simp only [insertionSortEquiv, List.length_cons, Nat.succ_eq_add_one, List.insertionSort, orderedInsertEquiv, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, HepLean.Fin.equivCons_trans, Equiv.trans_apply, HepLean.Fin.equivCons_zero, HepLean.Fin.finExtractOne_apply_eq, Fin.isValue, HepLean.Fin.finExtractOne_symm_inl_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.cast_mk, Fin.eta] conv_rhs => enter [2, 4] rw [orderedInsert_eq_insertIdx_orderedInsertPos] conv_rhs => rhs rw [← insertSign_insert] change insertSign q (↑(orderedInsertPos le ((List.insertionSort le (φ1 :: φs))) φ)) φ (List.insertionSort le (φ1 :: φs)) rw [← koszulSignInsert_eq_insertSign q le] rw [insertSign_zero] simp | φ1 :: φs, n + 1, h => by conv_lhs => rw [List.insertIdx_succ_cons] rw [koszulSign] rw [koszulSign_insertIdx] conv_rhs => rhs simp only [List.insertIdx_succ_cons] simp only [List.insertionSort, List.length_cons, insertionSortEquiv, Nat.succ_eq_add_one, Equiv.trans_apply, HepLean.Fin.equivCons_succ] erw [orderedInsertEquiv_fin_succ] simp only [Fin.eta, Fin.coe_cast] rhs rw [orderedInsert_eq_insertIdx_orderedInsertPos] conv_rhs => lhs rw [insertSign_succ_cons, koszulSign] ring_nf conv_lhs => lhs rw [mul_assoc, mul_comm] rw [mul_assoc] conv_rhs => rw [mul_assoc, mul_assoc] congr 1 let rs := (List.insertionSort le (List.insertIdx n φ φs)) have hnsL : n < (List.insertIdx n φ φs).length := by rw [List.length_insertIdx _ _] simp only [List.length_cons, add_le_add_iff_right] at h rw [if_pos h] exact Nat.succ_le_succ h let ni : Fin rs.length := (insertionSortEquiv le (List.insertIdx n φ φs)) ⟨n, hnsL⟩ let nro : Fin (rs.length + 1) := ⟨↑(orderedInsertPos le rs φ1), orderedInsertPos_lt_length le rs φ1⟩ rw [koszulSignInsert_insertIdx, koszulSignInsert_cons] trans koszulSignInsert q le φ1 φs * (koszulSignCons q le φ1 φ *insertSign q ni φ rs) · simp only [rs, ni] ring trans koszulSignInsert q le φ1 φs * (superCommuteCoef q [φ] [φ1] * insertSign q (nro.succAbove ni) φ (List.insertIdx nro φ1 rs)) swap · simp only [rs, nro, ni] ring congr 1 simp only [Fin.succAbove] have hns : rs.get ni = φ := by simp only [Fin.eta, rs] rw [← insertionSortEquiv_get] simp only [Function.comp_apply, Equiv.symm_apply_apply, List.get_eq_getElem, ni] simp_all only [List.length_cons, add_le_add_iff_right, List.getElem_insertIdx_self] have hc1 (hninro : ni.castSucc < nro) : ¬ le φ1 φ := by rw [← hns] exact lt_orderedInsertPos_rel le φ1 rs ni hninro have hc2 (hninro : ¬ ni.castSucc < nro) : le φ1 φ := by rw [← hns] refine gt_orderedInsertPos_rel le φ1 rs ?_ ni hninro exact List.sorted_insertionSort le (List.insertIdx n φ φs) by_cases hn : ni.castSucc < nro · simp only [hn, ↓reduceIte, Fin.coe_castSucc] rw [insertSign_insert_gt] swap · exact hn congr 1 rw [koszulSignCons_eq_superComuteCoef] simp only [hc1 hn, ↓reduceIte] rw [superCommuteCoef_comm] · simp only [hn, ↓reduceIte, Fin.val_succ] rw [insertSign_insert_lt, ← mul_assoc] congr 1 rw [superCommuteCoef_mul_self, koszulSignCons] simp only [hc2 hn, ↓reduceIte] exact Nat.le_of_not_lt hn exact Nat.le_of_lt_succ (orderedInsertPos_lt_length le rs φ1) · exact Nat.le_of_lt_succ h · exact Nat.le_of_lt_succ h end Wick