/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.OverColor.Basic import HepLean.Mathematics.PiTensorProduct import HepLean.SpaceTime.LorentzVector.Complex.Basic import HepLean.Lorentz.Weyl.Two import HepLean.SpaceTime.PauliMatrices.Basic /-! ## Pauli matrices -/ namespace PauliMatrix open Complex open Lorentz open Fermion open TensorProduct open CategoryTheory.MonoidalCategory noncomputable section open Matrix open MatrixGroups open Complex open TensorProduct open SpaceTime /-- The tensor `σ^μ^a^{dot a}` based on the Pauli-matrices as an element of `complexContr ⊗ leftHanded ⊗ rightHanded`. -/ def asTensor : (complexContr ⊗ leftHanded ⊗ rightHanded).V := ∑ i, complexContrBasis i ⊗ₜ leftRightToMatrix.symm (σSA i) /-- The expansion of `asTensor` into complexContrBasis basis vectors . -/ lemma asTensor_expand_complexContrBasis : asTensor = complexContrBasis (Sum.inl 0) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inl 0)) + complexContrBasis (Sum.inr 0) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 0)) + complexContrBasis (Sum.inr 1) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 1)) + complexContrBasis (Sum.inr 2) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 2)) := by rfl /-- The expansion of the pauli matrix `σ₀` in terms of a basis of tensor product vectors. -/ lemma leftRightToMatrix_σSA_inl_0_expand : leftRightToMatrix.symm (σSA (Sum.inl 0)) = leftBasis 0 ⊗ₜ rightBasis 0 + leftBasis 1 ⊗ₜ rightBasis 1 := by simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue] erw [leftRightToMatrix_symm_expand_tmul] simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ0, of_apply, cons_val', empty_val', cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, one_smul, zero_smul, add_zero, head_fin_const, zero_add, CategoryTheory.Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj] /-- The expansion of the pauli matrix `σ₁` in terms of a basis of tensor product vectors. -/ lemma leftRightToMatrix_σSA_inr_0_expand : leftRightToMatrix.symm (σSA (Sum.inr 0)) = leftBasis 0 ⊗ₜ rightBasis 1 + leftBasis 1 ⊗ₜ rightBasis 0:= by simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue] erw [leftRightToMatrix_symm_expand_tmul] simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ1, of_apply, cons_val', empty_val', cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, zero_smul, one_smul, zero_add, head_fin_const, add_zero, CategoryTheory.Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj] /-- The expansion of the pauli matrix `σ₂` in terms of a basis of tensor product vectors. -/ lemma leftRightToMatrix_σSA_inr_1_expand : leftRightToMatrix.symm (σSA (Sum.inr 1)) = -(I • leftBasis 0 ⊗ₜ[ℂ] rightBasis 1) + I • leftBasis 1 ⊗ₜ[ℂ] rightBasis 0 := by simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue] erw [leftRightToMatrix_symm_expand_tmul] simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ2, of_apply, cons_val', empty_val', cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, zero_smul, neg_smul, zero_add, head_fin_const, add_zero] /-- The expansion of the pauli matrix `σ₃` in terms of a basis of tensor product vectors. -/ lemma leftRightToMatrix_σSA_inr_2_expand : leftRightToMatrix.symm (σSA (Sum.inr 2)) = leftBasis 0 ⊗ₜ rightBasis 0 - leftBasis 1 ⊗ₜ rightBasis 1 := by simp only [Action.instMonoidalCategory_tensorObj_V, Fin.isValue] erw [leftRightToMatrix_symm_expand_tmul] simp only [σSA, Fin.isValue, Basis.coe_mk, σSA', σ3, of_apply, cons_val', empty_val', cons_val_fin_one, Fin.sum_univ_two, cons_val_zero, cons_val_one, head_cons, one_smul, zero_smul, add_zero, head_fin_const, neg_smul, zero_add, CategoryTheory.Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj] rfl /-- The expansion of `asTensor` into complexContrBasis basis of tensor product vectors. -/ lemma asTensor_expand : asTensor = complexContrBasis (Sum.inl 0) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 0) + complexContrBasis (Sum.inl 0) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 1) + complexContrBasis (Sum.inr 0) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 1) + complexContrBasis (Sum.inr 0) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 0) - I • complexContrBasis (Sum.inr 1) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 1) + I • complexContrBasis (Sum.inr 1) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 0) + complexContrBasis (Sum.inr 2) ⊗ₜ (leftBasis 0 ⊗ₜ rightBasis 0) - complexContrBasis (Sum.inr 2) ⊗ₜ (leftBasis 1 ⊗ₜ rightBasis 1) := by rw [asTensor_expand_complexContrBasis] rw [leftRightToMatrix_σSA_inl_0_expand, leftRightToMatrix_σSA_inr_0_expand, leftRightToMatrix_σSA_inr_1_expand, leftRightToMatrix_σSA_inr_2_expand] simp only [Action.instMonoidalCategory_tensorObj_V, CategoryTheory.Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, Fin.isValue, tmul_add, tmul_neg, tmul_smul, tmul_sub] rfl /-- The tensor `σ^μ^a^{dot a}` based on the Pauli-matrices as a morphism, `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ leftHanded ⊗ rightHanded` manifesting the invariance under the `SL(2,ℂ)` action. -/ def asConsTensor : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ leftHanded ⊗ rightHanded where hom := { toFun := fun a => let a' : ℂ := a a' • asTensor, map_add' := fun x y => by simp only [add_smul], map_smul' := fun m x => by simp only [smul_smul] rfl} comm M := by ext x : 2 simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp, Function.comp_apply] let x' : ℂ := x change x' • asTensor = (TensorProduct.map (complexContr.ρ M) (TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M))) (x' • asTensor) simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul] apply congrArg nth_rewrite 2 [asTensor] simp only [Action.instMonoidalCategory_tensorObj_V, CategoryTheory.Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, map_sum, map_tmul] symm calc _ = ∑ x, ((complexContr.ρ M) (complexContrBasis x) ⊗ₜ[ℂ] leftRightToMatrix.symm (SL2C.toLinearMapSelfAdjointMatrix M (σSA x))) := by refine Finset.sum_congr rfl (fun x _ => ?_) rw [← leftRightToMatrix_ρ_symm_selfAdjoint] rfl _ = ∑ x, ((∑ i, (SL2C.toLorentzGroup M).1 i x • (complexContrBasis i)) ⊗ₜ[ℂ] ∑ j, leftRightToMatrix.symm ((SL2C.toLorentzGroup M⁻¹).1 x j • (σSA j))) := by refine Finset.sum_congr rfl (fun x _ => ?_) rw [SL2CRep_ρ_basis, SL2C.toLinearMapSelfAdjointMatrix_σSA] simp only [Action.instMonoidalCategory_tensorObj_V, SL2C.toLorentzGroup_apply_coe, Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton, map_inv, lorentzGroupIsGroup_inv, AddSubgroup.coe_add, selfAdjoint.val_smul, AddSubgroup.val_finset_sum, map_add, map_sum] _ = ∑ x, ∑ i, ∑ j, ((SL2C.toLorentzGroup M).1 i x • (complexContrBasis i)) ⊗ₜ[ℂ] leftRightToMatrix.symm.toLinearMap ((SL2C.toLorentzGroup M⁻¹).1 x j • (σSA j)) := by refine Finset.sum_congr rfl (fun x _ => ?_) rw [sum_tmul] refine Finset.sum_congr rfl (fun i _ => ?_) rw [tmul_sum] rfl _ = ∑ x, ∑ i, ∑ j, ((SL2C.toLorentzGroup M).1 i x • (complexContrBasis i)) ⊗ₜ[ℂ] ((SL2C.toLorentzGroup M⁻¹).1 x j • leftRightToMatrix.symm ((σSA j))) := by refine Finset.sum_congr rfl (fun x _ => (Finset.sum_congr rfl (fun i _ => (Finset.sum_congr rfl (fun j _ => ?_))))) simp only [Action.instMonoidalCategory_tensorObj_V, SL2C.toLorentzGroup_apply_coe, map_inv, lorentzGroupIsGroup_inv, LinearMap.map_smul_of_tower, LinearEquiv.coe_coe, tmul_smul] _ = ∑ x, ∑ i, ∑ j, ((SL2C.toLorentzGroup M).1 i x * (SL2C.toLorentzGroup M⁻¹).1 x j) • ((complexContrBasis i)) ⊗ₜ[ℂ] leftRightToMatrix.symm ((σSA j)) := by refine Finset.sum_congr rfl (fun x _ => (Finset.sum_congr rfl (fun i _ => (Finset.sum_congr rfl (fun j _ => ?_))))) rw [smul_tmul, smul_smul, tmul_smul] _ = ∑ i, ∑ x, ∑ j, ((SL2C.toLorentzGroup M).1 i x * (SL2C.toLorentzGroup M⁻¹).1 x j) • ((complexContrBasis i)) ⊗ₜ[ℂ] leftRightToMatrix.symm ((σSA j)) := Finset.sum_comm _ = ∑ i, ∑ j, ∑ x, ((SL2C.toLorentzGroup M).1 i x * (SL2C.toLorentzGroup M⁻¹).1 x j) • ((complexContrBasis i)) ⊗ₜ[ℂ] leftRightToMatrix.symm ((σSA j)) := Finset.sum_congr rfl (fun x _ => Finset.sum_comm) _ = ∑ i, ∑ j, (∑ x, (SL2C.toLorentzGroup M).1 i x * (SL2C.toLorentzGroup M⁻¹).1 x j) • ((complexContrBasis i)) ⊗ₜ[ℂ] leftRightToMatrix.symm ((σSA j)) := by refine Finset.sum_congr rfl (fun i _ => (Finset.sum_congr rfl (fun j _ => ?_))) rw [Finset.sum_smul] _ = ∑ i, ∑ j, ((1 : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ) i j) • ((complexContrBasis i)) ⊗ₜ[ℂ] leftRightToMatrix.symm ((σSA j)) := by refine Finset.sum_congr rfl (fun i _ => (Finset.sum_congr rfl (fun j _ => ?_))) congr change ((SL2C.toLorentzGroup M) * (SL2C.toLorentzGroup M⁻¹)).1 i j = _ rw [← SL2C.toLorentzGroup.map_mul] simp only [mul_inv_cancel, _root_.map_one, lorentzGroupIsGroup_one_coe] _ = ∑ i, ((1 : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ) i i) • ((complexContrBasis i)) ⊗ₜ[ℂ] leftRightToMatrix.symm ((σSA i)) := by refine Finset.sum_congr rfl (fun i _ => ?_) refine Finset.sum_eq_single i (fun b _ hb => ?_) (fun hb => ?_) · simp [one_apply_ne' hb] · simp only [Finset.mem_univ, not_true_eq_false] at hb _ = asTensor := by refine Finset.sum_congr rfl (fun i _ => ?_) simp only [Action.instMonoidalCategory_tensorObj_V, one_apply_eq, one_smul, CategoryTheory.Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj] lemma asConsTensor_apply_one : asConsTensor.hom (1 : ℂ) = asTensor := by change asConsTensor.hom.toFun (1 : ℂ) = asTensor simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, asConsTensor, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul] end end PauliMatrix