/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.LorentzTensor.GraphicalSpecies import HepLean.SpaceTime.LorentzVector.Basic /-! # Lorentz Tensors This file is currently a work-in-progress. The aim is to define Lorentz tensors, and devlop a systematic way to manipulate them. To manipulate them we will use the theory of modular operads (see e.g. [Raynor][raynor2021graphical]). -/ /-- A Lorentz Tensor defined by its coordinate map. -/ def LorentzTensor (d : ℕ) (X : FintypeCat) : Type := (X → Fin 1 ⊕ Fin d) → ℝ /-- An instance of a additive commutative monoid on `LorentzTensor`. -/ instance (d : ℕ) (X : FintypeCat) : AddCommMonoid (LorentzTensor d X) := Pi.addCommMonoid /-- An instance of a module on `LorentzVector`. -/ noncomputable instance (d : ℕ) (X : FintypeCat) : Module ℝ (LorentzTensor d X) := Pi.module _ _ _ namespace LorentzTensor open BigOperators open elGr open CategoryTheory variable {d : ℕ} {X Y : FintypeCat} /-- The map taking a list of `LorentzVector d` indexed by `X` to a ` LorentzTensor d X`. -/ def tmul (t : X → LorentzVector d) : LorentzTensor d X := fun f => ∏ x, (t x) (f x) /- An equivalence between `X → Fin 1 ⊕ Fin d` and `Y → Fin 1 ⊕ Fin d` given an isomorphism between `X` and `Y`. -/ def indexEquivOfIndexHom (f : X ≅ Y) : (X → Fin 1 ⊕ Fin d) ≃ (Y → Fin 1 ⊕ Fin d) := Equiv.piCongrLeft' _ (FintypeCat.equivEquivIso.symm f) /-- Given an isomorphism of indexing sets, a linear equivalence on Lorentz tensors. -/ noncomputable def mapOfIndexHom (f : X ≅ Y) : LorentzTensor d Y ≃ₗ[ℝ] LorentzTensor d X := LinearEquiv.piCongrLeft' ℝ _ (indexEquivOfIndexHom f).symm /-! ## Graphical species and Lorentz tensors -/ /-- The graphical species defined by Lorentz tensors. For this simple case, 𝓣 gets mapped to `PUnit`, if one wishes to include fermions etc, then `PUnit` will change to account for the colouring of edges. -/ noncomputable def graphicalSpecies (d : ℕ) : GraphicalSpecies where obj x := match x with | ⟨𝓣⟩ => PUnit | ⟨as f⟩ => LorentzTensor d f map {x y} f := match x, y, f with | ⟨𝓣⟩, ⟨𝓣⟩, _ => 𝟙 PUnit | ⟨𝓣⟩, ⟨as x⟩, ⟨f⟩ => Empty.elim f | ⟨as f⟩, ⟨𝓣⟩, _ => fun _ => PUnit.unit | ⟨as f⟩, ⟨as g⟩, ⟨h⟩ => (mapOfIndexHom h).toEquiv.toFun map_id X := by match X with | ⟨𝓣⟩ => rfl | ⟨as f⟩ => rfl map_comp {x y z} f g := by match x, y, z, f, g with | ⟨𝓣⟩, ⟨𝓣⟩, ⟨𝓣⟩, _, _ => rfl | _, ⟨𝓣⟩, ⟨as _⟩, _, ⟨g⟩ => exact Empty.elim g | ⟨𝓣⟩, ⟨as _⟩, _, ⟨f⟩, _ => exact Empty.elim f | ⟨as x⟩, ⟨as y⟩, ⟨as z⟩, ⟨f⟩, ⟨g⟩ => rfl | ⟨as x⟩, ⟨𝓣⟩, ⟨𝓣⟩, _, _ => rfl | ⟨as x⟩, ⟨as y⟩, ⟨𝓣⟩, _, _ => rfl end LorentzTensor