/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.Tree.Elab import HepLean.Tensors.Tree.NodeIdentities.Basic import HepLean.Tensors.Tree.NodeIdentities.Congr import HepLean.Tensors.Tree.NodeIdentities.ProdComm import HepLean.Tensors.Tree.NodeIdentities.PermProd import HepLean.Tensors.Tree.NodeIdentities.PermContr import HepLean.Tensors.Tree.NodeIdentities.ContrSwap import HepLean.Tensors.TensorSpecies.ContractLemmas /-! ## Units as tensors -/ open IndexNotation open CategoryTheory open MonoidalCategory open OverColor open HepLean.Fin open TensorProduct noncomputable section namespace TensorSpecies /-- The unit of a tensor species in a `PiTensorProduct`. -/ def unitTensor (S : TensorSpecies) (c : S.C) : S.F.obj (OverColor.mk ![S.τ c, c]) := (OverColor.Discrete.pairIsoSep S.FD).hom.hom ((S.unit.app (Discrete.mk c)).hom (1 : S.k)) variable {S : TensorSpecies} open TensorTree /-- The relation between two units of colors which are equal. -/ lemma unitTensor_congr {c c' : S.C} (h : c = c') : {S.unitTensor c | μ ν}ᵀ.tensor = (perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by subst h; fin_cases x <;> rfl)) {S.unitTensor c' | μ ν}ᵀ).tensor := by subst h change _ = (S.F.map (𝟙 _)).hom (S.unitTensor c) simp /-- Applying `Discrete.pairIsoSep` inv to `unitTensor` returns the unit natural transformation evaluated at `1`. -/ lemma pairIsoSep_inv_unitTensor (c : S.C) : (Discrete.pairIsoSep S.FD).inv.hom (S.unitTensor c) = (S.unit.app (Discrete.mk c)).hom (1 : S.k) := by simp only [Action.instMonoidalCategory_tensorObj_V, Nat.succ_eq_add_one, Nat.reduceAdd, unitTensor, Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V] erw [Discrete.rep_iso_inv_hom_apply] /-- The unit tensor is equal to a permutation of indices of the dual tensor. -/ lemma unitTensor_eq_dual_perm (c : S.C) : {S.unitTensor c | μ ν}ᵀ.tensor = ({S.unitTensor (S.τ c) | ν μ }ᵀ |> perm (OverColor.equivToHomEq (finMapToEquiv ![1,0] ![1, 0]) (fun x => match x with | 0 => by rfl | 1 => (S.τ_involution c).symm))).tensor := by simp [unitTensor, tensorNode_tensor, perm_tensor] have h1 := S.unit_symm c erw [h1] have hg : (Discrete.pairIsoSep S.FD).hom.hom ∘ₗ (S.FD.obj { as := S.τ c } ◁ S.FD.map (Discrete.eqToHom (S.τ_involution c))).hom ∘ₗ (β_ (S.FD.obj { as := S.τ (S.τ c) }) (S.FD.obj { as := S.τ c })).hom.hom = (S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) (fun x => match x with | 0 => by rfl | 1 => (S.τ_involution c).symm))).hom ∘ₗ (Discrete.pairIsoSep S.FD).hom.hom := by apply TensorProduct.ext' intro x y simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_whiskerLeft_hom, LinearMap.coe_comp, Function.comp_apply, Fin.isValue] change (Discrete.pairIsoSep S.FD).hom.hom (((y ⊗ₜ[S.k] ((S.FD.map (Discrete.eqToHom _)).hom x)))) = ((S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) _)).hom ∘ₗ (Discrete.pairIsoSep S.FD).hom.hom) (x ⊗ₜ[S.k] y) rw [Discrete.pairIsoSep_tmul] conv_rhs => simp [Discrete.pairIsoSep_tmul] change _ = (S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) _)).hom ((Discrete.pairIsoSep S.FD).hom.hom (x ⊗ₜ[S.k] y)) rw [Discrete.pairIsoSep_tmul] simp only [F_def, Nat.succ_eq_add_one, Nat.reduceAdd, mk_hom, Functor.id_obj, Fin.isValue] erw [OverColor.lift.map_tprod] apply congrArg funext i fin_cases i · simp only [Fin.zero_eta, Fin.isValue, Matrix.cons_val_zero, Fin.cases_zero, mk_hom, Nat.succ_eq_add_one, Nat.reduceAdd, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply] rfl · simp only [Fin.mk_one, Fin.isValue, Matrix.cons_val_one, Matrix.head_cons, mk_hom, Nat.succ_eq_add_one, Nat.reduceAdd, lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, LinearEquiv.ofLinear_apply] rfl exact congrFun (congrArg (fun f => f.toFun) hg) _ /-- The unit tensor of the dual of a color `c` is equal to the unit tensor of `c` with indicees permuted. -/ lemma dual_unitTensor_eq_perm (c : S.C) : {S.unitTensor (S.τ c) | ν μ}ᵀ.tensor = ({S.unitTensor c | μ ν}ᵀ |> perm (OverColor.equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) (fun x => match x with | 0 => (S.τ_involution c) | 1 => by rfl))).tensor := by rw [unitTensor_eq_dual_perm] conv => lhs rw [perm_tensor_eq <| unitTensor_congr (S.τ_involution c)] rw [perm_perm] refine perm_congr ?_ rfl simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue] rfl /-- Applying `contrOneTwoLeft` with the unit tensor is the identity map. -/ lemma contrOneTwoLeft_unitTensor {c1 : S.C} (x : S.F.obj (OverColor.mk ![c1])) : contrOneTwoLeft x (S.unitTensor c1) = x := by simp only [Nat.succ_eq_add_one, Nat.reduceAdd, contrOneTwoLeft, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Action.instMonoidalCategory_leftUnitor_hom_hom, Monoidal.tensorUnit_obj, Action.instMonoidalCategory_whiskerRight_hom, Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, Action.instMonoidalCategory_associator_inv_hom, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj] erw [pairIsoSep_inv_unitTensor (S := S) (c := c1)] change (S.F.mapIso (mkIso _)).hom.hom _ = _ rw [Discrete.rep_iso_apply_iff, Discrete.rep_iso_inv_apply_iff] simpa using S.contr_unit c1 ((OverColor.forgetLiftApp S.FD c1).hom.hom ((S.F.map (OverColor.mkIso (by funext x; fin_cases x; rfl)).hom).hom x)) /-- Contracting a vector with a unit tensor returns the vector. -/ lemma vec_contr_unitTensor_eq_self {c1 : S.C} (x : S.F.obj (OverColor.mk ![c1])) : {x | μ ⊗ S.unitTensor c1 | μ ν}ᵀ.tensor = ({x | ν}ᵀ |> perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; rfl ))).tensor := by rw [contr_one_two_left_eq_contrOneTwoLeft, contrOneTwoLeft_unitTensor] rfl /-- Contracting a unit tensor with a vector returns the unit vector. -/ lemma unitTensor_contr_vec_eq_self {c1 : S.C} (x : S.F.obj (OverColor.mk ![S.τ c1])) : {S.unitTensor c1 | ν μ ⊗ x | μ}ᵀ.tensor = ({x | ν}ᵀ |> perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; rfl ))).tensor := by conv_lhs => rw [contr_tensor_eq <| prod_comm _ _ _ _] rw [perm_contr_congr 2 0 (by simp; decide) (by simp; decide)] rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| unitTensor_eq_dual_perm _] rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_right _ _ _ _] rw [perm_tensor_eq <| perm_contr_congr 1 0 (by simp; decide) (by simp; decide)] rw [perm_perm] rw [perm_tensor_eq <| contr_swap _ _] rw [perm_perm] erw [perm_tensor_eq <| vec_contr_unitTensor_eq_self _] rw [perm_perm] refine perm_congr (OverColor.Hom.fin_ext _ _ fun i => ?_) rfl simp only [mk_left, mk_hom, Function.comp_apply, equivToHomEq_toEquiv, Hom.hom_comp, Over.comp_left, equivToHomEq_hom_left, types_comp_apply, ContrPair.contrSwapHom_hom_left_apply, mkIso_hom_hom_left_apply, extractTwo_hom_left_apply, permProdRight_toEquiv, finExtractOnePerm_apply, finExtractOne_symm_inr_apply, braidPerm_toEquiv] fin_cases i · decide end TensorSpecies end