/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.TensorSpecies.Basic import HepLean.Tensors.TensorSpecies.MetricTensor /-! # Isomorphism between rep of color `c` and rep of dual color. -/ open IndexNotation open CategoryTheory open MonoidalCategory noncomputable section namespace TensorSpecies open TensorTree variable (S : TensorSpecies) /-- The morphism from `S.FD.obj (Discrete.mk c)` to `S.FD.obj (Discrete.mk (S.τ c))` defined by contracting with the metric. -/ def toDualRep (c : S.C) : S.FD.obj (Discrete.mk c) ⟶ S.FD.obj (Discrete.mk (S.τ c)) := (ρ_ (S.FD.obj (Discrete.mk c))).inv ≫ (S.FD.obj { as := c } ◁ (S.metric.app (Discrete.mk (S.τ c)))) ≫ (α_ (S.FD.obj (Discrete.mk c)) (S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv ≫ (S.contr.app (Discrete.mk c) ▷ S.FD.obj { as := S.τ c }) ≫ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom /-- The `toDualRep` for equal colors is the same, up-to conjugation by a trivial equivalence. -/ lemma toDualRep_congr {c c' : S.C} (h : c = c') : S.toDualRep c = S.FD.map (Discrete.eqToHom h) ≫ S.toDualRep c' ≫ S.FD.map (Discrete.eqToHom (congrArg S.τ h.symm)) := by subst h simp only [eqToHom_refl, Discrete.functor_map_id, Category.comp_id, Category.id_comp] /-- The morphism from `S.FD.obj (Discrete.mk (S.τ c))` to `S.FD.obj (Discrete.mk c)` defined by contracting with the metric. -/ def fromDualRep (c : S.C) : S.FD.obj (Discrete.mk (S.τ c)) ⟶ S.FD.obj (Discrete.mk c) := S.toDualRep (S.τ c) ≫ S.FD.map (Discrete.eqToHom (S.τ_involution c)) /-- The rewriting of `toDualRep` in terms of `contrOneTwoLeft`. -/ lemma toDualRep_apply_eq_contrOneTwoLeft (c : S.C) (x : S.FD.obj (Discrete.mk c)) : (S.toDualRep c).hom x = (S.tensorToVec (S.τ c)).hom.hom (contrOneTwoLeft (((S.tensorToVec c).inv.hom x)) (S.metricTensor (S.τ c))) := by simp only [toDualRep, Monoidal.tensorUnit_obj, Action.comp_hom, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Action.instMonoidalCategory_rightUnitor_inv_hom, Action.instMonoidalCategory_whiskerLeft_hom, Action.instMonoidalCategory_associator_inv_hom, Action.instMonoidalCategory_whiskerRight_hom, Action.instMonoidalCategory_leftUnitor_hom_hom, ModuleCat.coe_comp, Function.comp_apply, ModuleCat.MonoidalCategory.rightUnitor_inv_apply, ModuleCat.MonoidalCategory.whiskerLeft_apply, Nat.succ_eq_add_one, Nat.reduceAdd, contrOneTwoLeft, Functor.comp_obj, Discrete.functor_obj_eq_as, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, OverColor.Discrete.rep_iso_hom_inv_apply] repeat apply congrArg erw [pairIsoSep_inv_metricTensor] rfl /-- Expansion of `toDualRep` is `(S.tensorToVec c).inv.hom x | μ ⊗ S.metricTensor (S.τ c) | μ ν`. -/ lemma toDualRep_tensorTree (c : S.C) (x : S.FD.obj (Discrete.mk c)) : let y : S.F.obj (OverColor.mk ![c]) := (S.tensorToVec c).inv.hom x (S.toDualRep c).hom x = (S.tensorToVec (S.τ c)).hom.hom ({y | μ ⊗ S.metricTensor (S.τ c) | μ ν}ᵀ |> perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; rfl ))).tensor := by simp only rw [toDualRep_apply_eq_contrOneTwoLeft] apply congrArg exact contrOneTwoLeft_tensorTree ((S.tensorToVec c).inv.hom x) (S.metricTensor (S.τ c)) lemma fromDualRep_tensorTree (c : S.C) (x : S.FD.obj (Discrete.mk (S.τ c))) : let y : S.F.obj (OverColor.mk ![S.τ c]) := (S.tensorToVec (S.τ c)).inv.hom x (S.fromDualRep c).hom x = (S.tensorToVec c).hom.hom ({y | μ ⊗ S.metricTensor (S.τ (S.τ c))| μ ν}ᵀ |> perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; exact (S.τ_involution c).symm ))).tensor := by simp only rw [fromDualRep] simp only [Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero] rw [toDualRep_tensorTree] end TensorSpecies end