/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import Mathlib.LinearAlgebra.PiTensorProduct import Mathlib.RepresentationTheory.Basic /-! # Structure of Lorentz Tensors In this file we set up the basic structures we will use to define Lorentz tensors. ## References -- For modular operads see: [Raynor][raynor2021graphical] -/ noncomputable section open TensorProduct variable {R : Type} [CommSemiring R] /-- An initial structure specifying a tensor system (e.g. a system in which you can define real Lorentz tensors). -/ structure PreTensorStructure (R : Type) [CommSemiring R] where /-- The allowed colors of indices. For example for a real Lorentz tensor these are `{up, down}`. -/ Color : Type /-- To each color we associate a module. -/ ColorModule : Color → Type /-- A map taking every color to its dual color. -/ τ : Color → Color /-- The map `τ` is an involution. -/ τ_involutive : Function.Involutive τ /-- Each `ColorModule` has the structure of an additive commutative monoid. -/ colorModule_addCommMonoid : ∀ μ, AddCommMonoid (ColorModule μ) /-- Each `ColorModule` has the structure of a module over `R`. -/ colorModule_module : ∀ μ, Module R (ColorModule μ) /-- The contraction of a vector with a vector with dual color. -/ contrDual : ∀ μ, ColorModule μ ⊗[R] ColorModule (τ μ) →ₗ[R] R namespace PreTensorStructure variable (𝓣 : PreTensorStructure R) variable {d : ℕ} {X Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y] [Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W] {cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color} {cW : W → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν: 𝓣.Color} instance : AddCommMonoid (𝓣.ColorModule μ) := 𝓣.colorModule_addCommMonoid μ instance : Module R (𝓣.ColorModule μ) := 𝓣.colorModule_module μ /-- The type of tensors given a map from an indexing set `X` to the type of colors, specifying the color of that index. -/ def Tensor (c : X → 𝓣.Color) : Type := ⨂[R] x, 𝓣.ColorModule (c x) instance : AddCommMonoid (𝓣.Tensor cX) := PiTensorProduct.instAddCommMonoid fun i => 𝓣.ColorModule (cX i) instance : Module R (𝓣.Tensor cX) := PiTensorProduct.instModule /-- Equivalence of `ColorModule` given an equality of colors. -/ def colorModuleCast (h : μ = ν) : 𝓣.ColorModule μ ≃ₗ[R] 𝓣.ColorModule ν where toFun x := Equiv.cast (congrArg 𝓣.ColorModule h) x invFun x := (Equiv.cast (congrArg 𝓣.ColorModule h)).symm x map_add' x y := by subst h rfl map_smul' x y := by subst h rfl left_inv x := Equiv.symm_apply_apply (Equiv.cast (congrArg 𝓣.ColorModule h)) x right_inv x := Equiv.apply_symm_apply (Equiv.cast (congrArg 𝓣.ColorModule h)) x lemma tensorProd_piTensorProd_ext {M : Type} [AddCommMonoid M] [Module R M] {f g : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY →ₗ[R] M} (h : ∀ p q, f (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q) = g (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)) : f = g := by apply TensorProduct.ext' refine fun x ↦ PiTensorProduct.induction_on' x ?_ (by intro a b hx hy y simp [map_add, add_tmul, hx, hy]) intro rx fx refine fun y ↦ PiTensorProduct.induction_on' y ?_ (by intro a b hx hy simp at hx hy simp [map_add, tmul_add, hx, hy]) intro ry fy simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, LinearMapClass.map_smul] apply congrArg simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul] exact congrArg (HSMul.hSMul rx) (h fx fy) /-! ## Mapping isomorphisms -/ /-- An linear equivalence of tensor spaces given a color-preserving equivalence of indexing sets. -/ def mapIso {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = d ∘ e) : 𝓣.Tensor c ≃ₗ[R] 𝓣.Tensor d := (PiTensorProduct.reindex R _ e) ≪≫ₗ (PiTensorProduct.congr (fun y => 𝓣.colorModuleCast (by rw [h]; simp))) lemma mapIso_trans_cond {e : X ≃ Y} {e' : Y ≃ Z} (h : cX = cY ∘ e) (h' : cY = cZ ∘ e') : cX = cZ ∘ (e.trans e') := by funext a subst h h' simp @[simp] lemma mapIso_trans (e : X ≃ Y) (e' : Y ≃ Z) (h : cX = cY ∘ e) (h' : cY = cZ ∘ e') : (𝓣.mapIso e h ≪≫ₗ 𝓣.mapIso e' h') = 𝓣.mapIso (e.trans e') (𝓣.mapIso_trans_cond h h') := by refine LinearEquiv.toLinearMap_inj.mp ?_ apply PiTensorProduct.ext apply MultilinearMap.ext intro x simp only [mapIso, LinearMap.compMultilinearMap_apply, LinearEquiv.coe_coe, LinearEquiv.trans_apply, PiTensorProduct.reindex_tprod, Equiv.symm_trans_apply] change (PiTensorProduct.congr fun y => 𝓣.colorModuleCast _) ((PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (cY x)) e') ((PiTensorProduct.congr fun y => 𝓣.colorModuleCast _) _)) = (PiTensorProduct.congr fun y => 𝓣.colorModuleCast _) ((PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (cX x)) (e.trans e')) _) rw [PiTensorProduct.congr_tprod, PiTensorProduct.reindex_tprod, PiTensorProduct.congr_tprod, PiTensorProduct.reindex_tprod, PiTensorProduct.congr] simp [colorModuleCast] @[simp] lemma mapIso_mapIso (e : X ≃ Y) (e' : Y ≃ Z) (h : cX = cY ∘ e) (h' : cY = cZ ∘ e') (T : 𝓣.Tensor cX) : (𝓣.mapIso e' h') (𝓣.mapIso e h T) = 𝓣.mapIso (e.trans e') (𝓣.mapIso_trans_cond h h') T := by rw [← LinearEquiv.trans_apply, mapIso_trans] @[simp] lemma mapIso_symm (e : X ≃ Y) (h : cX = cY ∘ e) : (𝓣.mapIso e h).symm = 𝓣.mapIso e.symm ((Equiv.eq_comp_symm e cY cX).mpr h.symm) := by refine LinearEquiv.toLinearMap_inj.mp ?_ apply PiTensorProduct.ext apply MultilinearMap.ext intro x simp [mapIso, LinearMap.compMultilinearMap_apply, LinearEquiv.coe_coe, LinearEquiv.symm_apply_apply, PiTensorProduct.reindex_tprod] change (PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (cX x)) e).symm ((PiTensorProduct.congr fun y => 𝓣.colorModuleCast _).symm ((PiTensorProduct.tprod R) x)) = (PiTensorProduct.congr fun y => 𝓣.colorModuleCast _) ((PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (cY x)) e.symm) ((PiTensorProduct.tprod R) x)) rw [PiTensorProduct.reindex_tprod, PiTensorProduct.congr_tprod, PiTensorProduct.congr_symm_tprod, LinearEquiv.symm_apply_eq, PiTensorProduct.reindex_tprod] apply congrArg funext i simp only [colorModuleCast, Equiv.cast_symm, LinearEquiv.coe_symm_mk, Equiv.symm_symm_apply, LinearEquiv.coe_mk] rw [← Equiv.symm_apply_eq] simp only [Equiv.cast_symm, Equiv.cast_apply, cast_cast] apply cast_eq_iff_heq.mpr rw [Equiv.apply_symm_apply] @[simp] lemma mapIso_refl : 𝓣.mapIso (Equiv.refl X) (rfl : cX = cX) = LinearEquiv.refl R _ := by refine LinearEquiv.toLinearMap_inj.mp ?_ apply PiTensorProduct.ext apply MultilinearMap.ext intro x simp only [mapIso, Equiv.refl_symm, Equiv.refl_apply, PiTensorProduct.reindex_refl, LinearMap.compMultilinearMap_apply, LinearEquiv.coe_coe, LinearEquiv.trans_apply, LinearEquiv.refl_apply, LinearEquiv.refl_toLinearMap, LinearMap.id, LinearMap.coe_mk, AddHom.coe_mk, id_eq] change (PiTensorProduct.congr fun y => 𝓣.colorModuleCast _) ((PiTensorProduct.tprod R) x) = _ rw [PiTensorProduct.congr_tprod] rfl @[simp] lemma mapIso_tprod {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = d ∘ e) (f : (i : X) → 𝓣.ColorModule (c i)) : (𝓣.mapIso e h) (PiTensorProduct.tprod R f) = (PiTensorProduct.tprod R (fun i => 𝓣.colorModuleCast (by rw [h]; simp) (f (e.symm i)))) := by simp [mapIso] change (PiTensorProduct.congr fun y => 𝓣.colorModuleCast _) ((PiTensorProduct.reindex R _ e) ((PiTensorProduct.tprod R) f)) = _ rw [PiTensorProduct.reindex_tprod] exact PiTensorProduct.congr_tprod (fun y => 𝓣.colorModuleCast _) fun i => f (e.symm i) /-! ## Pure tensors This section is needed since: `PiTensorProduct.tmulEquiv` is not defined for dependent types. Hence we need to construct a version of it here. -/ /-- The type of pure tensors, i.e. of the form `v1 ⊗ v2 ⊗ v3 ⊗ ...`. -/ abbrev PureTensor (c : X → 𝓣.Color) := (x : X) → 𝓣.ColorModule (c x) /-- A pure tensor in `𝓣.PureTensor (Sum.elim cX cY)` constructed from a pure tensor in `𝓣.PureTensor cX` and a pure tensor in `𝓣.PureTensor cY`. -/ def elimPureTensor (p : 𝓣.PureTensor cX) (q : 𝓣.PureTensor cY) : 𝓣.PureTensor (Sum.elim cX cY) := fun x => match x with | Sum.inl x => p x | Sum.inr x => q x @[simp] lemma elimPureTensor_update_right (p : 𝓣.PureTensor cX) (q : 𝓣.PureTensor cY) (y : Y) (r : 𝓣.ColorModule (cY y)) : 𝓣.elimPureTensor p (Function.update q y r) = Function.update (𝓣.elimPureTensor p q) (Sum.inr y) r := by funext x match x with | Sum.inl x => rfl | Sum.inr x => change Function.update q y r x = _ simp only [Function.update, Sum.inr.injEq, Sum.elim_inr] split_ifs rename_i h subst h simp_all only rfl @[simp] lemma elimPureTensor_update_left (p : 𝓣.PureTensor cX) (q : 𝓣.PureTensor cY) (x : X) (r : 𝓣.ColorModule (cX x)) : 𝓣.elimPureTensor (Function.update p x r) q = Function.update (𝓣.elimPureTensor p q) (Sum.inl x) r := by funext y match y with | Sum.inl y => change (Function.update p x r) y = _ simp only [Function.update, Sum.inl.injEq, Sum.elim_inl] split_ifs rename_i h subst h simp_all only rfl | Sum.inr y => rfl /-- The projection of a pure tensor in `𝓣.PureTensor (Sum.elim cX cY)` onto a pure tensor in `𝓣.PureTensor cX`. -/ def inlPureTensor (p : 𝓣.PureTensor (Sum.elim cX cY)) : 𝓣.PureTensor cX := fun x => p (Sum.inl x) /-- The projection of a pure tensor in `𝓣.PureTensor (Sum.elim cX cY)` onto a pure tensor in `𝓣.PureTensor cY`. -/ def inrPureTensor (p : 𝓣.PureTensor (Sum.elim cX cY)) : 𝓣.PureTensor cY := fun y => p (Sum.inr y) @[simp] lemma inlPureTensor_update_left [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim cX cY)) (x : X) (v1 : 𝓣.ColorModule (Sum.elim cX cY (Sum.inl x))) : 𝓣.inlPureTensor (Function.update f (Sum.inl x) v1) = Function.update (𝓣.inlPureTensor f) x v1 := by funext y simp [inlPureTensor, Function.update, Sum.inl.injEq, Sum.elim_inl] split next h => subst h simp_all only rfl @[simp] lemma inrPureTensor_update_left [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim cX cY)) (x : X) (v1 : 𝓣.ColorModule (Sum.elim cX cY (Sum.inl x))) : 𝓣.inrPureTensor (Function.update f (Sum.inl x) v1) = (𝓣.inrPureTensor f) := by funext x simp [inrPureTensor, Function.update] @[simp] lemma inrPureTensor_update_right [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim cX cY)) (y : Y) (v1 : 𝓣.ColorModule (Sum.elim cX cY (Sum.inr y))) : 𝓣.inrPureTensor (Function.update f (Sum.inr y) v1) = Function.update (𝓣.inrPureTensor f) y v1 := by funext y simp [inrPureTensor, Function.update, Sum.inl.injEq, Sum.elim_inl] split next h => subst h simp_all only rfl @[simp] lemma inlPureTensor_update_right [DecidableEq (X ⊕ Y)] (f : 𝓣.PureTensor (Sum.elim cX cY)) (y : Y) (v1 : 𝓣.ColorModule (Sum.elim cX cY (Sum.inr y))) : 𝓣.inlPureTensor (Function.update f (Sum.inr y) v1) = (𝓣.inlPureTensor f) := by funext x simp [inlPureTensor, Function.update] /-- The multilinear map taking pure tensors a `𝓣.PureTensor cX` and a pure tensor in `𝓣.PureTensor cY`, and constructing a tensor in `𝓣.Tensor (Sum.elim cX cY))`. -/ def elimPureTensorMulLin : MultilinearMap R (fun i => 𝓣.ColorModule (cX i)) (MultilinearMap R (fun x => 𝓣.ColorModule (cY x)) (𝓣.Tensor (Sum.elim cX cY))) where toFun p := { toFun := fun q => PiTensorProduct.tprod R (𝓣.elimPureTensor p q) map_add' := fun m x v1 v2 => by simp [Sum.elim_inl, Sum.elim_inr] map_smul' := fun m x r v => by simp [Sum.elim_inl, Sum.elim_inr]} map_add' p x v1 v2 := by apply MultilinearMap.ext intro y simp map_smul' p x r v := by apply MultilinearMap.ext intro y simp /-! ## tensorator -/ /-! TODO: Replace with dependent type version of `MultilinearMap.domCoprod` when in Mathlib. -/ /-- The multi-linear map taking a pure tensor in `𝓣.PureTensor (Sum.elim cX cY)` and constructing a vector in `𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY`. -/ def domCoprod : MultilinearMap R (fun x => 𝓣.ColorModule (Sum.elim cX cY x)) (𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY) where toFun f := (PiTensorProduct.tprod R (𝓣.inlPureTensor f)) ⊗ₜ (PiTensorProduct.tprod R (𝓣.inrPureTensor f)) map_add' f xy v1 v2:= by match xy with | Sum.inl x => simp [← TensorProduct.add_tmul] | Sum.inr y => simp [← TensorProduct.tmul_add] map_smul' f xy r p := by match xy with | Sum.inl x => simp [TensorProduct.tmul_smul, TensorProduct.smul_tmul] | Sum.inr y => simp [TensorProduct.tmul_smul, TensorProduct.smul_tmul] /-- The linear map combining two tensors into a single tensor via the tensor product i.e. `v1 v2 ↦ v1 ⊗ v2`. -/ def tensoratorSymm : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY →ₗ[R] 𝓣.Tensor (Sum.elim cX cY) := by refine TensorProduct.lift { toFun := fun a ↦ PiTensorProduct.lift <| PiTensorProduct.lift (𝓣.elimPureTensorMulLin) a, map_add' := fun a b ↦ by simp map_smul' := fun r a ↦ by simp} /-! TODO: Replace with dependent type version of `PiTensorProduct.tmulEquiv` when in Mathlib. -/ /-- Splitting a tensor in `𝓣.Tensor (Sum.elim cX cY)` into the tensor product of two tensors. -/ def tensorator : 𝓣.Tensor (Sum.elim cX cY) →ₗ[R] 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY := PiTensorProduct.lift 𝓣.domCoprod /-- An equivalence formed by taking the tensor product of tensors. -/ def tensoratorEquiv (c : X → 𝓣.Color) (d : Y → 𝓣.Color) : 𝓣.Tensor c ⊗[R] 𝓣.Tensor d ≃ₗ[R] 𝓣.Tensor (Sum.elim c d) := LinearEquiv.ofLinear (𝓣.tensoratorSymm) (𝓣.tensorator) (by apply PiTensorProduct.ext apply MultilinearMap.ext intro p simp [tensorator, tensoratorSymm, domCoprod] change (PiTensorProduct.lift _) ((PiTensorProduct.tprod R) _) = LinearMap.id ((PiTensorProduct.tprod R) p) rw [PiTensorProduct.lift.tprod] simp [elimPureTensorMulLin, elimPureTensor] change (PiTensorProduct.tprod R) _ = _ apply congrArg funext x match x with | Sum.inl x => rfl | Sum.inr x => rfl) (by apply tensorProd_piTensorProd_ext intro p q simp [tensorator, tensoratorSymm] change (PiTensorProduct.lift 𝓣.domCoprod) ((PiTensorProduct.lift (𝓣.elimPureTensorMulLin p)) ((PiTensorProduct.tprod R) q)) =_ rw [PiTensorProduct.lift.tprod] simp [elimPureTensorMulLin] rfl) @[simp] lemma tensoratorEquiv_tmul_tprod (p : 𝓣.PureTensor cX) (q : 𝓣.PureTensor cY) : (𝓣.tensoratorEquiv cX cY) ((PiTensorProduct.tprod R) p ⊗ₜ[R] (PiTensorProduct.tprod R) q) = (PiTensorProduct.tprod R) (𝓣.elimPureTensor p q) := by simp only [tensoratorEquiv, tensoratorSymm, tensorator, domCoprod, LinearEquiv.ofLinear_apply, lift.tmul, LinearMap.coe_mk, AddHom.coe_mk, PiTensorProduct.lift.tprod] exact PiTensorProduct.lift.tprod q lemma tensoratorEquiv_mapIso_cond {e : X ≃ Y} {e' : Z ≃ Y} {e'' : W ≃ X} (h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : bW = cX ∘ e'') : Sum.elim bW cZ = Sum.elim cX cY ∘ ⇑(e''.sumCongr e') := by subst h h' h'' funext x match x with | Sum.inl x => rfl | Sum.inr x => rfl @[simp] lemma tensoratorEquiv_mapIso (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X) (h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : bW = cX ∘ e'') : (TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) ≪≫ₗ (𝓣.tensoratorEquiv cX cY) = (𝓣.tensoratorEquiv bW cZ) ≪≫ₗ (𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h'')) := by apply LinearEquiv.toLinearMap_inj.mp apply tensorProd_piTensorProd_ext intro p q simp only [LinearEquiv.coe_coe, LinearEquiv.trans_apply, congr_tmul, mapIso_tprod, tensoratorEquiv_tmul_tprod, Equiv.sumCongr_symm, Equiv.sumCongr_apply] apply congrArg funext x match x with | Sum.inl x => rfl | Sum.inr x => rfl @[simp] lemma tensoratorEquiv_mapIso_apply (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X) (h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : cW = cX ∘ e'') (x : 𝓣.Tensor cW ⊗[R] 𝓣.Tensor cZ) : (𝓣.tensoratorEquiv cX cY) ((TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) x) = (𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h'')) ((𝓣.tensoratorEquiv cW cZ) x) := by trans ((TensorProduct.congr (𝓣.mapIso e'' h'') (𝓣.mapIso e' h')) ≪≫ₗ (𝓣.tensoratorEquiv cX cY)) x rfl rw [tensoratorEquiv_mapIso] rfl exact e exact h lemma tensoratorEquiv_mapIso_tmul (e : X ≃ Y) (e' : Z ≃ Y) (e'' : W ≃ X) (h : cX = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (h'' : cW = cX ∘ e'') (x : 𝓣.Tensor cW) (y : 𝓣.Tensor cZ) : (𝓣.tensoratorEquiv cX cY) ((𝓣.mapIso e'' h'' x) ⊗ₜ[R] (𝓣.mapIso e' h' y)) = (𝓣.mapIso (Equiv.sumCongr e'' e') (𝓣.tensoratorEquiv_mapIso_cond h h' h'')) ((𝓣.tensoratorEquiv cW cZ) (x ⊗ₜ y)) := by rw [← tensoratorEquiv_mapIso_apply] rfl exact e exact h /-! ## Splitting tensors into tensor products -/ /-- The decomposition of a set into a direct sum based on the image of an injection. -/ def decompEmbedSet (f : Y ↪ X) : X ≃ {x // x ∈ (Finset.image f Finset.univ)ᶜ} ⊕ Y := (Equiv.Set.sumCompl (Set.range ⇑f)).symm.trans <| (Equiv.sumComm _ _).trans <| Equiv.sumCongr ((Equiv.subtypeEquivRight (by simp))) <| (Function.Embedding.toEquivRange f).symm /-- The restriction of a map from an indexing set to the space to the complement of the image of an embedding. -/ def decompEmbedColorLeft (c : X → 𝓣.Color) (f : Y ↪ X) : {x // x ∈ (Finset.image f Finset.univ)ᶜ} → 𝓣.Color := (c ∘ (decompEmbedSet f).symm) ∘ Sum.inl /-- The restriction of a map from an indexing set to the space to the image of an embedding. -/ def decompEmbedColorRight (c : X → 𝓣.Color) (f : Y ↪ X) : Y → 𝓣.Color := (c ∘ (decompEmbedSet f).symm) ∘ Sum.inr lemma decompEmbed_cond (c : X → 𝓣.Color) (f : Y ↪ X) : c = (Sum.elim (𝓣.decompEmbedColorLeft c f) (𝓣.decompEmbedColorRight c f)) ∘ decompEmbedSet f := by simpa [decompEmbedColorLeft, decompEmbedColorRight] using (Equiv.comp_symm_eq _ _ _).mp rfl /-- Decomposes a tensor into a tensor product of two tensors one which has indices in the image of the given embedding, and the other has indices in the complement of that image. -/ def decompEmbed (f : Y ↪ X) : 𝓣.Tensor cX ≃ₗ[R] 𝓣.Tensor (𝓣.decompEmbedColorLeft cX f) ⊗[R] 𝓣.Tensor (cX ∘ f) := (𝓣.mapIso (decompEmbedSet f) (𝓣.decompEmbed_cond cX f)) ≪≫ₗ (𝓣.tensoratorEquiv (𝓣.decompEmbedColorLeft cX f) (𝓣.decompEmbedColorRight cX f)).symm /-! ## Contraction -/ /-- A linear map taking tensors mapped with the same index set to the product of paired tensors. -/ def pairProd : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cX2 →ₗ[R] ⨂[R] x, 𝓣.ColorModule (cX x) ⊗[R] 𝓣.ColorModule (cX2 x) := TensorProduct.lift ( PiTensorProduct.map₂ (fun x => TensorProduct.mk R (𝓣.ColorModule (cX x)) (𝓣.ColorModule (cX2 x)))) lemma mkPiAlgebra_equiv (e : X ≃ Y) : (PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R)) = (PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R Y R)) ∘ₗ (PiTensorProduct.reindex R _ e).toLinearMap := by apply PiTensorProduct.ext apply MultilinearMap.ext intro x simp only [LinearMap.compMultilinearMap_apply, PiTensorProduct.lift.tprod, MultilinearMap.mkPiAlgebra_apply, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, PiTensorProduct.reindex_tprod, Equiv.prod_comp] /-- Given a tensor in `𝓣.Tensor cX` and a tensor in `𝓣.Tensor (𝓣.τ ∘ cX)`, the element of `R` formed by contracting all of their indices. -/ def contrAll' : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor (𝓣.τ ∘ cX) →ₗ[R] R := (PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R)) ∘ₗ (PiTensorProduct.map (fun x => 𝓣.contrDual (cX x))) ∘ₗ (𝓣.pairProd) lemma contrAll'_mapIso_cond {e : X ≃ Y} (h : cX = cY ∘ e) : 𝓣.τ ∘ cY = (𝓣.τ ∘ cX) ∘ ⇑e.symm := by subst h exact (Equiv.eq_comp_symm e (𝓣.τ ∘ cY) (𝓣.τ ∘ cY ∘ ⇑e)).mpr rfl @[simp] lemma contrAll'_mapIso (e : X ≃ Y) (h : c = cY ∘ e) : 𝓣.contrAll' ∘ₗ (TensorProduct.congr (𝓣.mapIso e h) (LinearEquiv.refl R _)).toLinearMap = 𝓣.contrAll' ∘ₗ (TensorProduct.congr (LinearEquiv.refl R _) (𝓣.mapIso e.symm (𝓣.contrAll'_mapIso_cond h))).toLinearMap := by apply TensorProduct.ext' refine fun x ↦ PiTensorProduct.induction_on' x ?_ (by intro a b hx hy y simp [map_add, add_tmul, hx, hy]) intro rx fx refine fun y ↦ PiTensorProduct.induction_on' y ?_ (by intro a b hx hy simp at hx hy simp [map_add, tmul_add, hx, hy]) intro ry fy simp [contrAll'] rw [mkPiAlgebra_equiv e] apply congrArg simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply] apply congrArg rw [← LinearEquiv.symm_apply_eq] rw [PiTensorProduct.reindex_symm] rw [← PiTensorProduct.map_reindex] subst h simp only [Equiv.symm_symm_apply, Function.comp_apply] apply congrArg rw [pairProd, pairProd] simp only [Function.comp_apply, lift.tmul, LinearMapClass.map_smul, LinearMap.smul_apply] apply congrArg change _ = ((PiTensorProduct.map₂ fun x => TensorProduct.mk R (𝓣.ColorModule (cY (e x))) (𝓣.ColorModule (𝓣.τ (cY (e x))))) ((PiTensorProduct.tprod R) fx)) ((𝓣.mapIso e.symm _) ((PiTensorProduct.tprod R) fy)) rw [mapIso_tprod] simp only [Equiv.symm_symm_apply, Function.comp_apply] rw [PiTensorProduct.map₂_tprod_tprod] change PiTensorProduct.reindex R _ e.symm ((PiTensorProduct.map₂ _ ((PiTensorProduct.tprod R) fun i => (𝓣.colorModuleCast _) (fx (e.symm i)))) ((PiTensorProduct.tprod R) fy)) = _ rw [PiTensorProduct.map₂_tprod_tprod] simp only [Equiv.symm_symm_apply, Function.comp_apply, mk_apply] erw [PiTensorProduct.reindex_tprod] apply congrArg funext i simp only [Equiv.symm_symm_apply] congr simp [colorModuleCast] apply cast_eq_iff_heq.mpr rw [Equiv.symm_apply_apply] @[simp] lemma contrAll'_mapIso_tmul (e : X ≃ Y) (h : c = cY ∘ e) (x : 𝓣.Tensor c) (y : 𝓣.Tensor (𝓣.τ ∘ cY)) : 𝓣.contrAll' ((𝓣.mapIso e h) x ⊗ₜ[R] y) = 𝓣.contrAll' (x ⊗ₜ[R] (𝓣.mapIso e.symm (𝓣.contrAll'_mapIso_cond h) y)) := by change (𝓣.contrAll' ∘ₗ (TensorProduct.congr (𝓣.mapIso e h) (LinearEquiv.refl R _)).toLinearMap) (x ⊗ₜ[R] y) = _ rw [contrAll'_mapIso] rfl /-- The contraction of all the indices of two tensors with dual colors. -/ def contrAll {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e) : 𝓣.Tensor c ⊗[R] 𝓣.Tensor d →ₗ[R] R := 𝓣.contrAll' ∘ₗ (TensorProduct.congr (LinearEquiv.refl _ _) (𝓣.mapIso e.symm (by subst h; funext a; simp; rw [𝓣.τ_involutive]))).toLinearMap lemma contrAll_symm_cond {e : X ≃ Y} (h : c = 𝓣.τ ∘ cY ∘ e) : cY = 𝓣.τ ∘ c ∘ ⇑e.symm := by subst h ext1 x simp only [Function.comp_apply, Equiv.apply_symm_apply] rw [𝓣.τ_involutive] lemma contrAll_mapIso_right_cond {e : X ≃ Y} {e' : Z ≃ Y} (h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') : c = 𝓣.τ ∘ cZ ∘ ⇑(e.trans e'.symm) := by subst h h' ext1 x simp only [Function.comp_apply, Equiv.coe_trans, Equiv.apply_symm_apply] @[simp] lemma contrAll_mapIso_right_tmul (e : X ≃ Y) (e' : Z ≃ Y) (h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') (x : 𝓣.Tensor c) (z : 𝓣.Tensor cZ) : 𝓣.contrAll e h (x ⊗ₜ[R] 𝓣.mapIso e' h' z) = 𝓣.contrAll (e.trans e'.symm) (𝓣.contrAll_mapIso_right_cond h h') (x ⊗ₜ[R] z) := by rw [contrAll, contrAll] simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, congr_tmul, LinearEquiv.refl_apply, mapIso_mapIso] congr @[simp] lemma contrAll_comp_mapIso_right (e : X ≃ Y) (e' : Z ≃ Y) (h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = cY ∘ e') : 𝓣.contrAll e h ∘ₗ (TensorProduct.congr (LinearEquiv.refl R (𝓣.Tensor c)) (𝓣.mapIso e' h')).toLinearMap = 𝓣.contrAll (e.trans e'.symm) (𝓣.contrAll_mapIso_right_cond h h') := by apply TensorProduct.ext' intro x y exact 𝓣.contrAll_mapIso_right_tmul e e' h h' x y lemma contrAll_mapIso_left_cond {e : X ≃ Y} {e' : Z ≃ X} (h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = c ∘ e') : cZ = 𝓣.τ ∘ cY ∘ ⇑(e'.trans e) := by subst h h' ext1 x simp only [Function.comp_apply, Equiv.coe_trans, Equiv.apply_symm_apply] @[simp] lemma contrAll_mapIso_left_tmul {e : X ≃ Y} {e' : Z ≃ X} (h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = c ∘ e') (x : 𝓣.Tensor cZ) (y : 𝓣.Tensor cY) : 𝓣.contrAll e h (𝓣.mapIso e' h' x ⊗ₜ[R] y) = 𝓣.contrAll (e'.trans e) (𝓣.contrAll_mapIso_left_cond h h') (x ⊗ₜ[R] y) := by rw [contrAll, contrAll] simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, congr_tmul, LinearEquiv.refl_apply, contrAll'_mapIso_tmul, mapIso_mapIso] congr @[simp] lemma contrAll_mapIso_left {e : X ≃ Y} {e' : Z ≃ X} (h : c = 𝓣.τ ∘ cY ∘ e) (h' : cZ = c ∘ e') : 𝓣.contrAll e h ∘ₗ (TensorProduct.congr (𝓣.mapIso e' h') (LinearEquiv.refl R (𝓣.Tensor cY))).toLinearMap = 𝓣.contrAll (e'.trans e) (𝓣.contrAll_mapIso_left_cond h h') := by apply TensorProduct.ext' intro x y exact 𝓣.contrAll_mapIso_left_tmul h h' x y end PreTensorStructure /-! TODO: Add unit here. -/ /-- A `PreTensorStructure` with the additional constraint that `contrDua` is symmetric. -/ structure TensorStructure (R : Type) [CommSemiring R] extends PreTensorStructure R where /-- The symmetry condition on `contrDua`. -/ contrDual_symm : ∀ μ, (contrDual μ) ∘ₗ (TensorProduct.comm R (ColorModule (τ μ)) (ColorModule μ)).toLinearMap = (contrDual (τ μ)) ∘ₗ (TensorProduct.congr (LinearEquiv.refl _ _) (toPreTensorStructure.colorModuleCast (by rw[toPreTensorStructure.τ_involutive]))).toLinearMap namespace TensorStructure open PreTensorStructure variable (𝓣 : TensorStructure R) variable {d : ℕ} {X Y Y' Z : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y] [Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] {c c₂ : X → 𝓣.Color} {d : Y → 𝓣.Color} {b : Z → 𝓣.Color} {d' : Y' → 𝓣.Color} {μ ν: 𝓣.Color} end TensorStructure /-- A `TensorStructure` with a group action. -/ structure GroupTensorStructure (R : Type) [CommSemiring R] (G : Type) [Group G] extends TensorStructure R where /-- For each color `μ` a representation of `G` on `ColorModule μ`. -/ repColorModule : (μ : Color) → Representation R G (ColorModule μ) /-- The contraction of a vector with its dual is invariant under the group action. -/ contrDual_inv : ∀ μ g, contrDual μ ∘ₗ TensorProduct.map (repColorModule μ g) (repColorModule (τ μ) g) = contrDual μ namespace GroupTensorStructure open TensorStructure open PreTensorStructure variable {G : Type} [Group G] variable (𝓣 : GroupTensorStructure R G) variable {d : ℕ} {X Y Y' Z : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y] [Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] {cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν: 𝓣.Color} /-- The representation of the group `G` on the vector space of tensors. -/ def rep : Representation R G (𝓣.Tensor cX) where toFun g := PiTensorProduct.map (fun x => 𝓣.repColorModule (cX x) g) map_one' := by simp_all only [_root_.map_one, PiTensorProduct.map_one] map_mul' g g' := by simp_all only [_root_.map_mul] exact PiTensorProduct.map_mul _ _ local infixl:78 " • " => 𝓣.rep lemma repColorModule_colorModuleCast_apply (h : μ = ν) (g : G) (x : 𝓣.ColorModule μ) : (𝓣.repColorModule ν g) (𝓣.colorModuleCast h x) = (𝓣.colorModuleCast h) (𝓣.repColorModule μ g x) := by subst h simp [colorModuleCast] @[simp] lemma repColorModule_colorModuleCast (h : μ = ν) (g : G) : (𝓣.repColorModule ν g) ∘ₗ (𝓣.colorModuleCast h).toLinearMap = (𝓣.colorModuleCast h).toLinearMap ∘ₗ (𝓣.repColorModule μ g) := by apply LinearMap.ext intro x simp [repColorModule_colorModuleCast_apply] @[simp] lemma rep_mapIso (e : X ≃ Y) (h : cX = cY ∘ e) (g : G) : (𝓣.rep g) ∘ₗ (𝓣.mapIso e h).toLinearMap = (𝓣.mapIso e h).toLinearMap ∘ₗ 𝓣.rep g := by apply PiTensorProduct.ext apply MultilinearMap.ext intro x simp only [LinearMap.compMultilinearMap_apply, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply] erw [mapIso_tprod] simp [rep, repColorModule_colorModuleCast_apply] change (PiTensorProduct.map fun x => (𝓣.repColorModule (cY x)) g) ((PiTensorProduct.tprod R) fun i => (𝓣.colorModuleCast _) (x (e.symm i))) = (𝓣.mapIso e h) ((PiTensorProduct.map _) ((PiTensorProduct.tprod R) x)) rw [PiTensorProduct.map_tprod, PiTensorProduct.map_tprod] rw [mapIso_tprod] apply congrArg funext i subst h simp [repColorModule_colorModuleCast_apply] @[simp] lemma rep_mapIso_apply (e : X ≃ Y) (h : cX = cY ∘ e) (g : G) (x : 𝓣.Tensor cX) : g • (𝓣.mapIso e h x) = (𝓣.mapIso e h) (g • x) := by trans ((𝓣.rep g) ∘ₗ (𝓣.mapIso e h).toLinearMap) x rfl simp @[simp] lemma rep_tprod (g : G) (f : (i : X) → 𝓣.ColorModule (cX i)) : g • (PiTensorProduct.tprod R f) = PiTensorProduct.tprod R (fun x => 𝓣.repColorModule (cX x) g (f x)) := by simp [rep] change (PiTensorProduct.map _) ((PiTensorProduct.tprod R) f) = _ rw [PiTensorProduct.map_tprod] /-! ## Group acting on tensor products -/ lemma rep_tensoratorEquiv (g : G) : (𝓣.tensoratorEquiv cX cY) ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.rep g ∘ₗ (𝓣.tensoratorEquiv cX cY).toLinearMap := by apply tensorProd_piTensorProd_ext intro p q simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, map_tmul, rep_tprod, tensoratorEquiv_tmul_tprod] apply congrArg funext x match x with | Sum.inl x => rfl | Sum.inr x => rfl lemma rep_tensoratorEquiv_apply (g : G) (x : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY) : (𝓣.tensoratorEquiv cX cY) ((TensorProduct.map (𝓣.rep g) (𝓣.rep g)) x) = (𝓣.rep g) ((𝓣.tensoratorEquiv cX cY) x) := by trans ((𝓣.tensoratorEquiv cX cY) ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x rfl rw [rep_tensoratorEquiv] rfl lemma rep_tensoratorEquiv_tmul (g : G) (x : 𝓣.Tensor cX) (y : 𝓣.Tensor cY) : (𝓣.tensoratorEquiv cX cY) ((g • x) ⊗ₜ[R] (g • y)) = g • ((𝓣.tensoratorEquiv cX cY) (x ⊗ₜ[R] y)) := by nth_rewrite 1 [← rep_tensoratorEquiv_apply] rfl /-! ## Group acting on contraction -/ @[simp] lemma contrAll_rep {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e) (g : G) : 𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.contrAll e h := by apply TensorProduct.ext' refine fun x ↦ PiTensorProduct.induction_on' x ?_ (by intro a b hx hy y simp [map_add, add_tmul, hx, hy]) intro rx fx refine fun y ↦ PiTensorProduct.induction_on' y ?_ (by intro a b hx hy simp at hx hy simp [map_add, tmul_add, hx, hy]) intro ry fy simp [contrAll, TensorProduct.smul_tmul] apply congrArg apply congrArg simp [contrAll'] apply congrArg simp [pairProd] change (PiTensorProduct.map _) ((PiTensorProduct.map₂ _ _) _) = (PiTensorProduct.map _) ((PiTensorProduct.map₂ _ _) _) rw [PiTensorProduct.map₂_tprod_tprod, PiTensorProduct.map₂_tprod_tprod, PiTensorProduct.map_tprod, PiTensorProduct.map_tprod] simp only [mk_apply] apply congrArg funext x rw [← repColorModule_colorModuleCast_apply] nth_rewrite 2 [← 𝓣.contrDual_inv (c x) g] rfl @[simp] lemma contrAll_rep_apply {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e) (g : G) (x : 𝓣.Tensor c ⊗ 𝓣.Tensor d) : 𝓣.contrAll e h (TensorProduct.map (𝓣.rep g) (𝓣.rep g) x) = 𝓣.contrAll e h x := by change (𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x = _ rw [contrAll_rep] @[simp] lemma contrAll_rep_tmul {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e) (g : G) (x : 𝓣.Tensor c) (y : 𝓣.Tensor d) : 𝓣.contrAll e h ((g • x) ⊗ₜ[R] (g • y)) = 𝓣.contrAll e h (x ⊗ₜ[R] y) := by nth_rewrite 2 [← contrAll_rep_apply] rfl end GroupTensorStructure end