/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.Tree.Elab import HepLean.Tensors.ComplexLorentz.Basic import Mathlib.LinearAlgebra.TensorProduct.Basis import HepLean.Tensors.Tree.NodeIdentities.Basic import HepLean.Tensors.Tree.NodeIdentities.PermProd import HepLean.Tensors.Tree.NodeIdentities.PermContr import HepLean.Tensors.Tree.NodeIdentities.ProdComm import HepLean.Tensors.Tree.NodeIdentities.ContrSwap import HepLean.Tensors.Tree.NodeIdentities.ContrContr import HepLean.Tensors.ComplexLorentz.Basis /-! ## Basis trees When contracting e.g. Pauli matrices with other tensors, it is sometimes convienent to rewrite the contraction in terms of a basis. The lemmas in this file allow us to do this. -/ open IndexNotation open CategoryTheory open MonoidalCategory open Matrix open MatrixGroups open Complex open TensorProduct open IndexNotation open CategoryTheory open TensorTree open OverColor.Discrete noncomputable section namespace complexLorentzTensor open Fermion /-! ## Tree expansions for Pauli matrices. -/ /-- The map to colors one gets when contracting with Pauli matrices on the right. -/ abbrev pauliMatrixContrMap {n : ℕ} (c : Fin n → complexLorentzTensor.C) := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) lemma prod_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} (t : TensorTree complexLorentzTensor c) : (TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor)).tensor = (((t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add (((t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add (((t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add (((t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add ((TensorTree.smul (-I) ((t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add ((TensorTree.smul I ((t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add ((t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0))).add (TensorTree.smul (-1) (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by rw [prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree] rw [prod_add _ _ _] rw [add_tensor_eq_snd <| prod_add _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] /- Moving smuls. -/ rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_smul _ _ _] rfl lemma contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} (t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2)) (h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) : (contr i j h (TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor))).tensor = ((contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add ((contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add ((contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add ((contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add ((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add ((TensorTree.smul I (contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add ((contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add (TensorTree.smul (-1) (contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _] /- Moving contr over add. -/ rw [contr_add] rw [add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] /- Moving contr over smul. -/ rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _] lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → complexLorentzTensor.C} (i : Fin (n + 3)) (j : Fin (n +2)) (h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) (b : Π k, Fin (complexLorentzTensor.repDim (c k))) : let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i) ((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3)) (finSumFinEquiv.symm i)) (contr i j h (TensorTree.prod (tensorNode (basisVector c b)) (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor))).tensor = ((contr i j h ((tensorNode (basisVector c' (b' 0 0 0))))).add ((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add ((contr i j h ((tensorNode (basisVector c' (b' 1 0 1))))).add ((contr i j h ((tensorNode (basisVector c' (b' 1 1 0))))).add ((TensorTree.smul (-I) (contr i j h ((tensorNode (basisVector c' (b' 2 0 1)))))).add ((TensorTree.smul I (contr i j h ((tensorNode (basisVector c' (b' 2 1 0)))))).add ((contr i j h ((tensorNode (basisVector c' (b' 3 0 0))))).add (TensorTree.smul (-1) (contr i j h ((tensorNode (basisVector c' (b' 3 1 1))))))))))))).tensor := by rw [contr_pauliMatrix_basis_tree_expand] /- Product of basis vectors . -/ rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] rfl /-- The map to color which appears when contracting a basis vector with puali matrices. -/ def pauliMatrixBasisProdMap {n : ℕ} {c : Fin n → complexLorentzTensor.C} (b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) : (i : Fin (n + (Nat.succ 0).succ.succ)) → Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR] (finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i) ((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3)) (finSumFinEquiv.symm i)) /-- The new basis vectors which appear when contracting pauli matrices with basis vectors. -/ def basisVectorContrPauli {n : ℕ} {c : Fin n → complexLorentzTensor.C} (i : Fin (n + 3)) (j : Fin (n +2)) (b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) := let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm) ∘ Fin.succAbove i ∘ Fin.succAbove j let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3) (i.succAbove (j.succAbove k)) basisVector c' (b' i1 i2 i3) lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} (i : Fin (n + 3)) (j : Fin (n +2)) (h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) (b : Π k, Fin (complexLorentzTensor.repDim (c k))) : let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm) ∘ Fin.succAbove i ∘ Fin.succAbove j let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3) (i.succAbove (j.succAbove k)) (contr i j h (TensorTree.prod (tensorNode (basisVector c b)) (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor))).tensor = ((( TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0)) (tensorNode (basisVector c' (b' 0 0 0))))).add (((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1)) (tensorNode (basisVector c' (b' 0 1 1))))).add (((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1)) (tensorNode (basisVector c' (b' 1 0 1))))).add (((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0)) (tensorNode (basisVector c' (b' 1 1 0))))).add ((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) (tensorNode (basisVector c' (b' 2 0 1)))))).add ((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) (tensorNode (basisVector c' (b' 2 1 0)))))).add (((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0)) (tensorNode (basisVector c' (b' 3 0 0))))).add (TensorTree.smul (-1) ((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) (tensorNode (basisVector c' (b' 3 1 1))))))))))))).tensor := by rw [basis_contr_pauliMatrix_basis_tree_expand'] /- Contracting basis vectors. -/ rw [add_tensor_eq_fst <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <| contr_basisVector_tree _] rfl lemma basis_contr_pauliMatrix_basis_tree_expand_tensor {n : ℕ} {c : Fin n → complexLorentzTensor.C} (i : Fin (n + 3)) (j : Fin (n +2)) (h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) (b : Π k, Fin (complexLorentzTensor.repDim (c k))) : (contr i j h (TensorTree.prod (tensorNode (basisVector c b)) (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor))).tensor = (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0)) • (basisVectorContrPauli i j b 0 0 0) + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1)) • (basisVectorContrPauli i j b 0 1 1) + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1)) • (basisVectorContrPauli i j b 1 0 1) + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0)) • (basisVectorContrPauli i j b 1 1 0) + (-I) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) • (basisVectorContrPauli i j b 2 0 1) + I • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) • (basisVectorContrPauli i j b 2 1 0) + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0)) • (basisVectorContrPauli i j b 3 0 0) + (-1 : ℂ) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) • (basisVectorContrPauli i j b 3 1 1) := by rw [basis_contr_pauliMatrix_basis_tree_expand] simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, cons_val_one, head_cons, Fin.val_zero, Nat.cast_zero, cons_val_two, Fin.val_one, Nat.cast_one, add_tensor, smul_tensor, tensorNode_tensor, neg_smul, one_smul, Int.reduceNeg] simp_all only [Function.comp_apply, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue] rfl end complexLorentzTensor end