/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.AnomalyCancellation.PureU1.Sorts import HepLean.AnomalyCancellation.PureU1.BasisLinear import HepLean.AnomalyCancellation.PureU1.VectorLike import Mathlib.Logic.Equiv.Fin /-! # Basis of `LinSols` in the odd case We give a basis of `LinSols` in the odd case. This basis has the special property that splits into two planes on which every point is a solution to the ACCs. -/ universe v u open Nat open Finset open BigOperators namespace PureU1 variable {n : ℕ} namespace VectorLikeOddPlane lemma odd_shift_eq (n : ℕ) : (1 + n) + n = 2 * n +1 := by omega lemma odd_shift_shift_eq (n : ℕ) : ((1+n)+1) + n.succ = 2 * n.succ + 1 := by omega section theDeltas /-- The inclusion of `Fin n` into `Fin ((n + 1) + n)` via the first `n`. This is then casted to `Fin (2 * n + 1)`. -/ def oddFst (j : Fin n) : Fin (2 * n + 1) := Fin.cast (split_odd n) (Fin.castAdd n (Fin.castAdd 1 j)) /-- The inclusion of `Fin n` into `Fin ((n + 1) + n)` via the second `n`. This is then casted to `Fin (2 * n + 1)`. -/ def oddSnd (j : Fin n) : Fin (2 * n + 1) := Fin.cast (split_odd n) (Fin.natAdd (n+1) j) /-- The element representing `1` in `Fin ((n + 1) + n)`. This is then casted to `Fin (2 * n + 1)`. -/ def oddMid : Fin (2 * n + 1) := Fin.cast (split_odd n) (Fin.castAdd n (Fin.natAdd n 1)) /-- The inclusion of `Fin n` into `Fin (1 + n + n)` via the first `n`. This is then casted to `Fin (2 * n + 1)`. -/ def oddShiftFst (j : Fin n) : Fin (2 * n + 1) := Fin.cast (odd_shift_eq n) (Fin.castAdd n (Fin.natAdd 1 j)) /-- The inclusion of `Fin n` into `Fin (1 + n + n)` via the second `n`. This is then casted to `Fin (2 * n + 1)`. -/ def oddShiftSnd (j : Fin n) : Fin (2 * n + 1) := Fin.cast (odd_shift_eq n) (Fin.natAdd (1 + n) j) /-- The element representing the `1` in `Fin (1 + n + n)`. This is then casted to `Fin (2 * n + 1)`. -/ def oddShiftZero : Fin (2 * n + 1) := Fin.cast (odd_shift_eq n) (Fin.castAdd n (Fin.castAdd n 1)) /-- The element representing the first `1` in `Fin (1 + n + 1 + n.succ)` casted to `Fin (2 * n.succ + 1)`. -/ def oddShiftShiftZero : Fin (2 * n.succ + 1) := Fin.cast (odd_shift_shift_eq n) (Fin.castAdd n.succ (Fin.castAdd 1 (Fin.castAdd n 1))) /-- The inclusion of `Fin n` into `Fin (1 + n + 1 + n.succ)` via the first `n` and casted to `Fin (2 * n.succ + 1)`. -/ def oddShiftShiftFst (j : Fin n) : Fin (2 * n.succ + 1) := Fin.cast (odd_shift_shift_eq n) (Fin.castAdd n.succ (Fin.castAdd 1 (Fin.natAdd 1 j))) /-- The element representing the second `1` in `Fin (1 + n + 1 + n.succ)` casted to `2 * n.succ + 1`. -/ def oddShiftShiftMid : Fin (2 * n.succ + 1) := Fin.cast (odd_shift_shift_eq n) (Fin.castAdd n.succ (Fin.natAdd (1+n) 1)) /-- The inclusion of `Fin n.succ` into `Fin (1 + n + 1 + n.succ)` via the `n.succ` and casted to `Fin (2 * n.succ + 1)`. -/ def oddShiftShiftSnd (j : Fin n.succ) : Fin (2 * n.succ + 1) := Fin.cast (odd_shift_shift_eq n) (Fin.natAdd ((1+n)+1) j) lemma oddShiftShiftZero_eq_oddFst_zero : @oddShiftShiftZero n = oddFst 0 := Fin.rev_inj.mp rfl lemma oddShiftShiftZero_eq_oddShiftZero : @oddShiftShiftZero n = oddShiftZero := rfl lemma oddShiftShiftFst_eq_oddFst_succ (j : Fin n) : oddShiftShiftFst j = oddFst j.succ := by rw [Fin.ext_iff] simp only [succ_eq_add_one, oddShiftShiftFst, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd, oddFst, Fin.val_succ] exact Nat.add_comm 1 ↑j lemma oddShiftShiftFst_eq_oddShiftFst_castSucc (j : Fin n) : oddShiftShiftFst j = oddShiftFst j.castSucc := by rfl lemma oddShiftShiftMid_eq_oddMid : @oddShiftShiftMid n = oddMid := by rw [Fin.ext_iff] simp only [succ_eq_add_one, oddShiftShiftMid, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd, Fin.val_eq_zero, add_zero, oddMid] exact Nat.add_comm 1 n lemma oddShiftShiftMid_eq_oddShiftFst_last : oddShiftShiftMid = oddShiftFst (Fin.last n) := by rfl lemma oddShiftShiftSnd_eq_oddSnd (j : Fin n.succ) : oddShiftShiftSnd j = oddSnd j := by rw [Fin.ext_iff] simp only [succ_eq_add_one, oddShiftShiftSnd, Fin.coe_cast, Fin.coe_natAdd, oddSnd, add_left_inj] exact Nat.add_comm 1 n lemma oddShiftShiftSnd_eq_oddShiftSnd (j : Fin n.succ) : oddShiftShiftSnd j = oddShiftSnd j := by rw [Fin.ext_iff] rfl lemma oddSnd_eq_oddShiftSnd (j : Fin n) : oddSnd j = oddShiftSnd j := by rw [Fin.ext_iff] simp only [oddSnd, Fin.coe_cast, Fin.coe_natAdd, oddShiftSnd, add_left_inj] exact Nat.add_comm n 1 lemma sum_odd (S : Fin (2 * n + 1) → ℚ) : ∑ i, S i = S oddMid + ∑ i : Fin n, ((S ∘ oddFst) i + (S ∘ oddSnd) i) := by have h1 : ∑ i, S i = ∑ i : Fin (n + 1 + n), S (Fin.cast (split_odd n) i) := by rw [Finset.sum_equiv (Fin.castOrderIso (split_odd n)).symm.toEquiv] · intro i simp only [mem_univ, Fin.symm_castOrderIso, RelIso.coe_fn_toEquiv] · exact fun _ _ => rfl rw [h1] rw [Fin.sum_univ_add, Fin.sum_univ_add] simp only [univ_unique, Fin.default_eq_zero, Fin.isValue, sum_singleton, Function.comp_apply] nth_rewrite 2 [add_comm] rw [add_assoc] rw [Finset.sum_add_distrib] rfl lemma sum_oddShift (S : Fin (2 * n + 1) → ℚ) : ∑ i, S i = S oddShiftZero + ∑ i : Fin n, ((S ∘ oddShiftFst) i + (S ∘ oddShiftSnd) i) := by have h1 : ∑ i, S i = ∑ i : Fin ((1+n)+n), S (Fin.cast (odd_shift_eq n) i) := by rw [Finset.sum_equiv (Fin.castOrderIso (odd_shift_eq n)).symm.toEquiv] · intro i simp only [mem_univ, Fin.castOrderIso, RelIso.coe_fn_toEquiv] · exact fun _ _ => rfl rw [h1, Fin.sum_univ_add, Fin.sum_univ_add] simp only [univ_unique, Fin.default_eq_zero, Fin.isValue, sum_singleton, Function.comp_apply] rw [add_assoc, Finset.sum_add_distrib] rfl end theDeltas section theBasisVectors /-- The first part of the basis as charge assignments. -/ def basisAsCharges (j : Fin n) : (PureU1 (2 * n + 1)).Charges := fun i => if i = oddFst j then 1 else if i = oddSnd j then - 1 else 0 /-- The second part of the basis as charge assignments. -/ def basis!AsCharges (j : Fin n) : (PureU1 (2 * n + 1)).Charges := fun i => if i = oddShiftFst j then 1 else if i = oddShiftSnd j then - 1 else 0 lemma basis_on_oddFst_self (j : Fin n) : basisAsCharges j (oddFst j) = 1 := by simp [basisAsCharges] lemma basis!_on_oddShiftFst_self (j : Fin n) : basis!AsCharges j (oddShiftFst j) = 1 := by simp [basis!AsCharges] lemma basis_on_oddFst_other {k j : Fin n} (h : k ≠ j) : basisAsCharges k (oddFst j) = 0 := by simp only [basisAsCharges, PureU1_numberCharges] simp only [oddFst, oddSnd] split · rename_i h1 rw [Fin.ext_iff] at h1 simp_all rw [Fin.ext_iff] at h simp_all · split · rename_i h1 h2 simp_all rw [Fin.ext_iff] at h2 simp only [Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd] at h2 omega · rfl lemma basis!_on_oddShiftFst_other {k j : Fin n} (h : k ≠ j) : basis!AsCharges k (oddShiftFst j) = 0 := by simp only [basis!AsCharges, PureU1_numberCharges] simp only [oddShiftFst, oddShiftSnd] split · rename_i h1 rw [Fin.ext_iff] at h1 simp_all rw [Fin.ext_iff] at h simp_all · split · rename_i h1 h2 simp_all rw [Fin.ext_iff] at h2 simp only [Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd] at h2 omega rfl lemma basis_on_other {k : Fin n} {j : Fin (2 * n + 1)} (h1 : j ≠ oddFst k) (h2 : j ≠ oddSnd k) : basisAsCharges k j = 0 := by simp only [basisAsCharges, PureU1_numberCharges] simp_all only [ne_eq, ↓reduceIte] lemma basis!_on_other {k : Fin n} {j : Fin (2 * n + 1)} (h1 : j ≠ oddShiftFst k) (h2 : j ≠ oddShiftSnd k) : basis!AsCharges k j = 0 := by simp only [basis!AsCharges, PureU1_numberCharges] simp_all only [ne_eq, ↓reduceIte] lemma basis_oddSnd_eq_minus_oddFst (j i : Fin n) : basisAsCharges j (oddSnd i) = - basisAsCharges j (oddFst i) := by simp only [basisAsCharges, PureU1_numberCharges, oddSnd, oddFst] split <;> split any_goals split any_goals split any_goals rfl all_goals rename_i h1 h2 all_goals rw [Fin.ext_iff] at h1 h2 all_goals simp_all all_goals rename_i h3 all_goals rw [Fin.ext_iff] at h3 all_goals simp_all all_goals omega lemma basis!_oddShiftSnd_eq_minus_oddShiftFst (j i : Fin n) : basis!AsCharges j (oddShiftSnd i) = - basis!AsCharges j (oddShiftFst i) := by simp only [basis!AsCharges, PureU1_numberCharges, oddShiftSnd, oddShiftFst] split <;> split any_goals split any_goals split any_goals rfl all_goals rename_i h1 h2 all_goals rw [Fin.ext_iff] at h1 h2 all_goals simp_all · subst h1 exact Fin.elim0 i all_goals rename_i h3 all_goals rw [Fin.ext_iff] at h3 all_goals simp_all all_goals omega lemma basis_on_oddSnd_self (j : Fin n) : basisAsCharges j (oddSnd j) = - 1 := by rw [basis_oddSnd_eq_minus_oddFst, basis_on_oddFst_self] lemma basis!_on_oddShiftSnd_self (j : Fin n) : basis!AsCharges j (oddShiftSnd j) = - 1 := by rw [basis!_oddShiftSnd_eq_minus_oddShiftFst, basis!_on_oddShiftFst_self] lemma basis_on_oddSnd_other {k j : Fin n} (h : k ≠ j) : basisAsCharges k (oddSnd j) = 0 := by rw [basis_oddSnd_eq_minus_oddFst, basis_on_oddFst_other h] rfl lemma basis!_on_oddShiftSnd_other {k j : Fin n} (h : k ≠ j) : basis!AsCharges k (oddShiftSnd j) = 0 := by rw [basis!_oddShiftSnd_eq_minus_oddShiftFst, basis!_on_oddShiftFst_other h] rfl lemma basis_on_oddMid (j : Fin n) : basisAsCharges j oddMid = 0 := by simp only [basisAsCharges, PureU1_numberCharges] split <;> rename_i h · rw [Fin.ext_iff] at h simp only [oddMid, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd, Fin.val_eq_zero, add_zero, oddFst] at h omega · split <;> rename_i h2 · rw [Fin.ext_iff] at h2 simp only [oddMid, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.coe_natAdd, Fin.val_eq_zero, add_zero, oddSnd] at h2 omega · rfl lemma basis!_on_oddShiftZero (j : Fin n) : basis!AsCharges j oddShiftZero = 0 := by simp only [basis!AsCharges, PureU1_numberCharges] split <;> rename_i h · rw [Fin.ext_iff] at h simp only [oddShiftZero, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.val_eq_zero, oddShiftFst, Fin.coe_natAdd] at h omega · split <;> rename_i h2 · rw [Fin.ext_iff] at h2 simp only [oddShiftZero, Fin.isValue, Fin.coe_cast, Fin.coe_castAdd, Fin.val_eq_zero, oddShiftSnd, Fin.coe_natAdd] at h2 omega · rfl lemma basis_linearACC (j : Fin n) : (accGrav (2 * n + 1)) (basisAsCharges j) = 0 := by rw [accGrav] simp only [LinearMap.coe_mk, AddHom.coe_mk] erw [sum_odd] simp [basis_oddSnd_eq_minus_oddFst, basis_on_oddMid] lemma basis!_linearACC (j : Fin n) : (accGrav (2 * n + 1)) (basis!AsCharges j) = 0 := by rw [accGrav] simp only [LinearMap.coe_mk, AddHom.coe_mk] rw [sum_oddShift, basis!_on_oddShiftZero] simp [basis!_oddShiftSnd_eq_minus_oddShiftFst] /-- The first part of the basis as `LinSols`. -/ @[simps!] def basis (j : Fin n) : (PureU1 (2 * n + 1)).LinSols := ⟨basisAsCharges j, by intro i simp only [PureU1_numberLinear] at i match i with | 0 => exact basis_linearACC j⟩ /-- The second part of the basis as `LinSols`. -/ @[simps!] def basis! (j : Fin n) : (PureU1 (2 * n + 1)).LinSols := ⟨basis!AsCharges j, by intro i simp only [PureU1_numberLinear] at i match i with | 0 => exact basis!_linearACC j⟩ /-- The whole basis as `LinSols`. -/ def basisa : Fin n ⊕ Fin n → (PureU1 (2 * n + 1)).LinSols := fun i => match i with | .inl i => basis i | .inr i => basis! i end theBasisVectors /-- Swapping the elements oddShiftFst j and oddShiftSnd j is equivalent to adding a vector basis!AsCharges j. -/ lemma swap!_as_add {S S' : (PureU1 (2 * n + 1)).LinSols} (j : Fin n) (hS : ((FamilyPermutations (2 * n + 1)).linSolRep (pairSwap (oddShiftFst j) (oddShiftSnd j))) S = S') : S'.val = S.val + (S.val (oddShiftSnd j) - S.val (oddShiftFst j)) • basis!AsCharges j := by funext i rw [← hS, FamilyPermutations_anomalyFreeLinear_apply] by_cases hi : i = oddShiftFst j · subst hi simp [HSMul.hSMul, basis!_on_oddShiftFst_self, pairSwap_inv_fst] · by_cases hi2 : i = oddShiftSnd j · subst hi2 simp [HSMul.hSMul,basis!_on_oddShiftSnd_self, pairSwap_inv_snd] · simp only [Equiv.invFun_as_coe, HSMul.hSMul, ACCSystemCharges.chargesAddCommMonoid_add, ACCSystemCharges.chargesModule_smul] rw [basis!_on_other hi hi2] change S.val ((pairSwap (oddShiftFst j) (oddShiftSnd j)).invFun i) =_ erw [pairSwap_inv_other (Ne.symm hi) (Ne.symm hi2)] simp /-- A point in the span of the first part of the basis as a charge. -/ def P (f : Fin n → ℚ) : (PureU1 (2 * n + 1)).Charges := ∑ i, f i • basisAsCharges i /-- A point in the span of the second part of the basis as a charge. -/ def P! (f : Fin n → ℚ) : (PureU1 (2 * n + 1)).Charges := ∑ i, f i • basis!AsCharges i /-- A point in the span of the basis as a charge. -/ def Pa (f : Fin n → ℚ) (g : Fin n → ℚ) : (PureU1 (2 * n + 1)).Charges := P f + P! g lemma P_oddFst (f : Fin n → ℚ) (j : Fin n) : P f (oddFst j) = f j := by rw [P, sum_of_charges] simp only [HSMul.hSMul, SMul.smul] rw [Finset.sum_eq_single j] · rw [basis_on_oddFst_self] exact Rat.mul_one (f j) · intro k _ hkj rw [basis_on_oddFst_other hkj] exact Rat.mul_zero (f k) · simp only [mem_univ, not_true_eq_false, _root_.mul_eq_zero, IsEmpty.forall_iff] lemma P!_oddShiftFst (f : Fin n → ℚ) (j : Fin n) : P! f (oddShiftFst j) = f j := by rw [P!, sum_of_charges] simp only [HSMul.hSMul, SMul.smul] rw [Finset.sum_eq_single j] · rw [basis!_on_oddShiftFst_self] exact Rat.mul_one (f j) · intro k _ hkj rw [basis!_on_oddShiftFst_other hkj] exact Rat.mul_zero (f k) · simp only [mem_univ, not_true_eq_false, _root_.mul_eq_zero, IsEmpty.forall_iff] lemma P_oddSnd (f : Fin n → ℚ) (j : Fin n) : P f (oddSnd j) = - f j := by rw [P, sum_of_charges] simp only [HSMul.hSMul, SMul.smul] rw [Finset.sum_eq_single j] · rw [basis_on_oddSnd_self] exact mul_neg_one (f j) · intro k _ hkj rw [basis_on_oddSnd_other hkj] exact Rat.mul_zero (f k) · simp lemma P!_oddShiftSnd (f : Fin n → ℚ) (j : Fin n) : P! f (oddShiftSnd j) = - f j := by rw [P!, sum_of_charges] simp only [HSMul.hSMul, SMul.smul] rw [Finset.sum_eq_single j] · rw [basis!_on_oddShiftSnd_self] exact mul_neg_one (f j) · intro k _ hkj rw [basis!_on_oddShiftSnd_other hkj] exact Rat.mul_zero (f k) · simp lemma P_oddMid (f : Fin n → ℚ) : P f (oddMid) = 0 := by rw [P, sum_of_charges] simp [HSMul.hSMul, SMul.smul, basis_on_oddMid] lemma P!_oddShiftZero (f : Fin n → ℚ) : P! f (oddShiftZero) = 0 := by rw [P!, sum_of_charges] simp [HSMul.hSMul, SMul.smul, basis!_on_oddShiftZero] lemma Pa_oddShiftShiftZero (f g : Fin n.succ → ℚ) : Pa f g oddShiftShiftZero = f 0 := by rw [Pa] simp only [ACCSystemCharges.chargesAddCommMonoid_add] nth_rewrite 1 [oddShiftShiftZero_eq_oddFst_zero] rw [oddShiftShiftZero_eq_oddShiftZero] rw [P_oddFst, P!_oddShiftZero] exact Rat.add_zero (f 0) lemma Pa_oddShiftShiftFst (f g : Fin n.succ → ℚ) (j : Fin n) : Pa f g (oddShiftShiftFst j) = f j.succ + g j.castSucc := by rw [Pa] simp only [ACCSystemCharges.chargesAddCommMonoid_add] nth_rewrite 1 [oddShiftShiftFst_eq_oddFst_succ] rw [oddShiftShiftFst_eq_oddShiftFst_castSucc] rw [P_oddFst, P!_oddShiftFst] lemma Pa_oddShiftShiftMid (f g : Fin n.succ → ℚ) : Pa f g (oddShiftShiftMid) = g (Fin.last n) := by rw [Pa] simp only [ACCSystemCharges.chargesAddCommMonoid_add] nth_rewrite 1 [oddShiftShiftMid_eq_oddMid] rw [oddShiftShiftMid_eq_oddShiftFst_last] rw [P_oddMid, P!_oddShiftFst] exact Rat.zero_add (g (Fin.last n)) lemma Pa_oddShiftShiftSnd (f g : Fin n.succ → ℚ) (j : Fin n.succ) : Pa f g (oddShiftShiftSnd j) = - f j - g j := by rw [Pa] simp only [ACCSystemCharges.chargesAddCommMonoid_add] nth_rewrite 1 [oddShiftShiftSnd_eq_oddSnd] rw [oddShiftShiftSnd_eq_oddShiftSnd] rw [P_oddSnd, P!_oddShiftSnd] ring lemma P_linearACC (f : Fin n → ℚ) : (accGrav (2 * n + 1)) (P f) = 0 := by rw [accGrav] simp only [LinearMap.coe_mk, AddHom.coe_mk] rw [sum_odd] simp [P_oddSnd, P_oddFst, P_oddMid] lemma P!_linearACC (f : Fin n → ℚ) : (accGrav (2 * n + 1)) (P! f) = 0 := by rw [accGrav] simp only [LinearMap.coe_mk, AddHom.coe_mk] rw [sum_oddShift] simp [P!_oddShiftSnd, P!_oddShiftFst, P!_oddShiftZero] lemma P_accCube (f : Fin n → ℚ) : accCube (2 * n +1) (P f) = 0 := by rw [accCube_explicit, sum_odd, P_oddMid] simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, Function.comp_apply, zero_add] apply Finset.sum_eq_zero intro i _ simp only [P_oddFst, P_oddSnd] ring lemma P!_accCube (f : Fin n → ℚ) : accCube (2 * n +1) (P! f) = 0 := by rw [accCube_explicit, sum_oddShift, P!_oddShiftZero] simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, Function.comp_apply, zero_add] apply Finset.sum_eq_zero intro i _ simp only [P!_oddShiftFst, P!_oddShiftSnd] ring lemma P_P_P!_accCube (g : Fin n → ℚ) (j : Fin n) : accCubeTriLinSymm (P g) (P g) (basis!AsCharges j) = (P g (oddShiftFst j))^2 - (g j)^2 := by simp only [accCubeTriLinSymm, PureU1Charges_numberCharges, TriLinearSymm.mk₃_toFun_apply_apply] rw [sum_oddShift, basis!_on_oddShiftZero] simp only [mul_zero, Function.comp_apply, zero_add] rw [Finset.sum_eq_single j, basis!_on_oddShiftFst_self, basis!_on_oddShiftSnd_self] · rw [← oddSnd_eq_oddShiftSnd, P_oddSnd] ring · intro k _ hkj erw [basis!_on_oddShiftFst_other hkj.symm, basis!_on_oddShiftSnd_other hkj.symm] simp only [mul_zero, add_zero] · simp lemma P_zero (f : Fin n → ℚ) (h : P f = 0) : ∀ i, f i = 0 := by intro i erw [← P_oddFst f] rw [h] rfl lemma P!_zero (f : Fin n → ℚ) (h : P! f = 0) : ∀ i, f i = 0 := by intro i rw [← P!_oddShiftFst f] rw [h] rfl lemma Pa_zero (f g : Fin n.succ → ℚ) (h : Pa f g = 0) : ∀ i, f i = 0 := by have h₃ := Pa_oddShiftShiftZero f g rw [h] at h₃ change 0 = _ at h₃ simp only at h₃ intro i have hinduc (iv : ℕ) (hiv : iv < n.succ) : f ⟨iv, hiv⟩ = 0 := by induction iv exact h₃.symm rename_i iv hi have hivi : iv < n.succ := lt_of_succ_lt hiv have hi2 := hi hivi have h1 := Pa_oddShiftShiftSnd f g ⟨iv, hivi⟩ rw [h, hi2] at h1 change 0 = _ at h1 simp only [neg_zero, succ_eq_add_one, zero_sub, zero_eq_neg] at h1 have h2 := Pa_oddShiftShiftFst f g ⟨iv, succ_lt_succ_iff.mp hiv⟩ simp only [succ_eq_add_one, h, Fin.succ_mk, Fin.castSucc_mk, h1, add_zero] at h2 exact h2.symm exact hinduc i.val i.prop lemma Pa_zero! (f g : Fin n.succ → ℚ) (h : Pa f g = 0) : ∀ i, g i = 0 := by have hf := Pa_zero f g h rw [Pa, P] at h simp only [succ_eq_add_one, hf, zero_smul, sum_const_zero, zero_add] at h exact P!_zero g h /-- A point in the span of the first part of the basis. -/ def P' (f : Fin n → ℚ) : (PureU1 (2 * n + 1)).LinSols := ∑ i, f i • basis i /-- A point in the span of the second part of the basis. -/ def P!' (f : Fin n → ℚ) : (PureU1 (2 * n + 1)).LinSols := ∑ i, f i • basis! i /-- A point in the span of the whole basis. -/ def Pa' (f : (Fin n) ⊕ (Fin n) → ℚ) : (PureU1 (2 * n + 1)).LinSols := ∑ i, f i • basisa i lemma Pa'_P'_P!' (f : (Fin n) ⊕ (Fin n) → ℚ) : Pa' f = P' (f ∘ Sum.inl) + P!' (f ∘ Sum.inr) := by exact Fintype.sum_sum_type _ lemma P'_val (f : Fin n → ℚ) : (P' f).val = P f := by simp only [P', P] funext i rw [sum_of_anomaly_free_linear, sum_of_charges] rfl lemma P!'_val (f : Fin n → ℚ) : (P!' f).val = P! f := by simp only [P!', P!] funext i rw [sum_of_anomaly_free_linear, sum_of_charges] rfl theorem basis_linear_independent : LinearIndependent ℚ (@basis n) := by apply Fintype.linearIndependent_iff.mpr intro f h change P' f = 0 at h have h1 : (P' f).val = 0 := (AddSemiconjBy.eq_zero_iff (ACCSystemLinear.LinSols.val 0) (congrFun (congrArg HAdd.hAdd (congrArg ACCSystemLinear.LinSols.val (id (Eq.symm h)))) (ACCSystemLinear.LinSols.val 0))).mp rfl rw [P'_val] at h1 exact P_zero f h1 theorem basis!_linear_independent : LinearIndependent ℚ (@basis! n) := by apply Fintype.linearIndependent_iff.mpr intro f h change P!' f = 0 at h have h1 : (P!' f).val = 0 := (AddSemiconjBy.eq_zero_iff (ACCSystemLinear.LinSols.val 0) (congrFun (congrArg HAdd.hAdd (congrArg ACCSystemLinear.LinSols.val (id (Eq.symm h)))) (ACCSystemLinear.LinSols.val 0))).mp rfl rw [P!'_val] at h1 exact P!_zero f h1 theorem basisa_linear_independent : LinearIndependent ℚ (@basisa n.succ) := by apply Fintype.linearIndependent_iff.mpr intro f h change Pa' f = 0 at h have h1 : (Pa' f).val = 0 := (AddSemiconjBy.eq_zero_iff (ACCSystemLinear.LinSols.val 0) (congrFun (congrArg HAdd.hAdd (congrArg ACCSystemLinear.LinSols.val (id (Eq.symm h)))) (ACCSystemLinear.LinSols.val 0))).mp rfl rw [Pa'_P'_P!'] at h1 change (P' (f ∘ Sum.inl)).val + (P!' (f ∘ Sum.inr)).val = 0 at h1 rw [P!'_val, P'_val] at h1 change Pa (f ∘ Sum.inl) (f ∘ Sum.inr) = 0 at h1 have hf := Pa_zero (f ∘ Sum.inl) (f ∘ Sum.inr) h1 have hg := Pa_zero! (f ∘ Sum.inl) (f ∘ Sum.inr) h1 intro i simp_all only [succ_eq_add_one, Function.comp_apply] cases i · simp_all · simp_all lemma Pa'_eq (f f' : (Fin n.succ) ⊕ (Fin n.succ) → ℚ) : Pa' f = Pa' f' ↔ f = f' := by refine Iff.intro (fun h => ?_) (fun h => ?_) · funext i rw [Pa', Pa'] at h have h1 : ∑ i : Fin n.succ ⊕ Fin n.succ, (f i + (- f' i)) • basisa i = 0 := by simp only [add_smul, neg_smul] rw [Finset.sum_add_distrib] rw [h] rw [← Finset.sum_add_distrib] simp have h2 : ∀ i, (f i + (- f' i)) = 0 := by exact Fintype.linearIndependent_iff.mp (@basisa_linear_independent n) (fun i => f i + -f' i) h1 have h2i := h2 i linarith · rw [h] /-! TODO: Replace the definition of `join` with a Mathlib definition, most likely `Sum.elim`. -/ /-- A helper function for what follows. -/ def join (g f : Fin n → ℚ) : Fin n ⊕ Fin n → ℚ := fun i => match i with | .inl i => g i | .inr i => f i lemma join_ext (g g' : Fin n → ℚ) (f f' : Fin n → ℚ) : join g f = join g' f' ↔ g = g' ∧ f = f' := by refine Iff.intro (fun h => ?_) (fun h => ?_) · apply And.intro · funext i exact congr_fun h (Sum.inl i) · funext i exact congr_fun h (Sum.inr i) · rw [h.left, h.right] lemma join_Pa (g g' : Fin n.succ → ℚ) (f f' : Fin n.succ → ℚ) : Pa' (join g f) = Pa' (join g' f') ↔ Pa g f = Pa g' f' := by refine Iff.intro (fun h => ?_) (fun h => ?_) · rw [Pa'_eq, join_ext] at h rw [h.left, h.right] · apply ACCSystemLinear.LinSols.ext rw [Pa'_P'_P!', Pa'_P'_P!'] simp only [succ_eq_add_one, ACCSystemLinear.linSolsAddCommMonoid_add_val, P'_val, P!'_val] exact h lemma Pa_eq (g g' : Fin n.succ → ℚ) (f f' : Fin n.succ → ℚ) : Pa g f = Pa g' f' ↔ g = g' ∧ f = f' := by rw [← join_Pa] rw [← join_ext] exact Pa'_eq _ _ lemma basisa_card : Fintype.card ((Fin n.succ) ⊕ (Fin n.succ)) = Module.finrank ℚ (PureU1 (2 * n.succ + 1)).LinSols := by erw [BasisLinear.finrank_AnomalyFreeLinear] simp only [Fintype.card_sum, Fintype.card_fin] exact Eq.symm (Nat.two_mul n.succ) /-- The basis formed out of our basisa vectors. -/ noncomputable def basisaAsBasis : Basis (Fin n.succ ⊕ Fin n.succ) ℚ (PureU1 (2 * n.succ + 1)).LinSols := basisOfLinearIndependentOfCardEqFinrank (@basisa_linear_independent n) basisa_card lemma span_basis (S : (PureU1 (2 * n.succ + 1)).LinSols) : ∃ (g f : Fin n.succ → ℚ), S.val = P g + P! f := by have h := (mem_span_range_iff_exists_fun ℚ).mp (Basis.mem_span basisaAsBasis S) obtain ⟨f, hf⟩ := h simp only [succ_eq_add_one, basisaAsBasis, coe_basisOfLinearIndependentOfCardEqFinrank, Fintype.sum_sum_type] at hf change P' _ + P!' _ = S at hf use f ∘ Sum.inl use f ∘ Sum.inr rw [← hf] simp only [succ_eq_add_one, ACCSystemLinear.linSolsAddCommMonoid_add_val, P'_val, P!'_val] rfl lemma span_basis_swap! {S : (PureU1 (2 * n.succ + 1)).LinSols} (j : Fin n.succ) (hS : ((FamilyPermutations (2 * n.succ + 1)).linSolRep (pairSwap (oddShiftFst j) (oddShiftSnd j))) S = S') (g f : Fin n.succ → ℚ) (hS1 : S.val = P g + P! f) : ∃ (g' f' : Fin n.succ → ℚ), S'.val = P g' + P! f' ∧ P! f' = P! f + (S.val (oddShiftSnd j) - S.val (oddShiftFst j)) • basis!AsCharges j ∧ g' = g := by let X := P! f + (S.val (oddShiftSnd j) - S.val (oddShiftFst j)) • basis!AsCharges j have hf : P! f ∈ Submodule.span ℚ (Set.range basis!AsCharges) := by rw [(mem_span_range_iff_exists_fun ℚ)] use f rfl have hP : (S.val (oddShiftSnd j) - S.val (oddShiftFst j)) • basis!AsCharges j ∈ Submodule.span ℚ (Set.range basis!AsCharges) := by apply Submodule.smul_mem apply SetLike.mem_of_subset apply Submodule.subset_span simp_all only [Set.mem_range, exists_apply_eq_apply] have hX : X ∈ Submodule.span ℚ (Set.range (basis!AsCharges)) := by apply Submodule.add_mem exact hf exact hP have hXsum := (mem_span_range_iff_exists_fun ℚ).mp hX obtain ⟨f', hf'⟩ := hXsum use g use f' change P! f' = _ at hf' erw [hf'] simp only [and_self, and_true] change S'.val = P g + (P! f + _) rw [← add_assoc, ← hS1] apply swap!_as_add at hS exact hS end VectorLikeOddPlane end PureU1