/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import Mathlib.Logic.Function.CompTypeclasses import Mathlib.Data.Real.Basic import Mathlib.Data.Fintype.BigOperators import Mathlib.Logic.Equiv.Fin import Mathlib.Tactic.FinCases /-! # Real Lorentz Tensors In this file we define real Lorentz tensors. We implicitly follow the definition of a modular operad. This will relation should be made explicit in the future. ## References -- For modular operads see: [Raynor][raynor2021graphical] -/ /-! TODO: Do complex tensors, with Van der Waerden notation for fermions. -/ /-! TODO: Generalize to maps into Lorentz tensors. -/ /-- The possible `colors` of an index for a RealLorentzTensor. There are two possiblities, `up` and `down`. -/ inductive RealLorentzTensor.Colors where | up : RealLorentzTensor.Colors | down : RealLorentzTensor.Colors /-- The association of colors with indices. For up and down this is `Fin 1 ⊕ Fin d`. -/ def RealLorentzTensor.ColorsIndex (d : ℕ) (μ : RealLorentzTensor.Colors) : Type := match μ with | RealLorentzTensor.Colors.up => Fin 1 ⊕ Fin d | RealLorentzTensor.Colors.down => Fin 1 ⊕ Fin d instance (d : ℕ) (μ : RealLorentzTensor.Colors) : Fintype (RealLorentzTensor.ColorsIndex d μ) := match μ with | RealLorentzTensor.Colors.up => instFintypeSum (Fin 1) (Fin d) | RealLorentzTensor.Colors.down => instFintypeSum (Fin 1) (Fin d) instance (d : ℕ) (μ : RealLorentzTensor.Colors) : DecidableEq (RealLorentzTensor.ColorsIndex d μ) := match μ with | RealLorentzTensor.Colors.up => instDecidableEqSum | RealLorentzTensor.Colors.down => instDecidableEqSum /-- An `IndexValue` is a set of actual values an index can take. e.g. for a 3-tensor (0, 1, 2). -/ def RealLorentzTensor.IndexValue {X : Type} (d : ℕ) (c : X → RealLorentzTensor.Colors) : Type 0 := (x : X) → RealLorentzTensor.ColorsIndex d (c x) /-- A Lorentz Tensor defined by its coordinate map. -/ structure RealLorentzTensor (d : ℕ) (X : Type) where /-- The color associated to each index of the tensor. -/ color : X → RealLorentzTensor.Colors /-- The coordinate map for the tensor. -/ coord : RealLorentzTensor.IndexValue d color → ℝ namespace RealLorentzTensor open Matrix universe u1 variable {d : ℕ} {X Y Z : Type} (c : X → Colors) /-! ## Colors -/ /-- The involution acting on colors. -/ def τ : Colors → Colors | Colors.up => Colors.down | Colors.down => Colors.up /-- The map τ is an involution. -/ @[simp] lemma τ_involutive : Function.Involutive τ := by intro x cases x <;> rfl lemma color_eq_dual_symm {μ ν : Colors} (h : μ = τ ν) : ν = τ μ := (Function.Involutive.eq_iff τ_involutive).mp h.symm /-- The color associated with an element of `x ∈ X` for a tensor `T`. -/ def ch {X : Type} (x : X) (T : RealLorentzTensor d X) : Colors := T.color x /-- An equivalence of `ColorsIndex` types given an equality of a colors. -/ def colorsIndexCast {d : ℕ} {μ₁ μ₂ : RealLorentzTensor.Colors} (h : μ₁ = μ₂) : ColorsIndex d μ₁ ≃ ColorsIndex d μ₂ := Equiv.cast (congrArg (ColorsIndex d) h) /-- An equivalence of `ColorsIndex` between that of a color and that of its dual. -/ def colorsIndexDualCastSelf {d : ℕ} {μ : RealLorentzTensor.Colors}: ColorsIndex d μ ≃ ColorsIndex d (τ μ) where toFun x := match μ with | RealLorentzTensor.Colors.up => x | RealLorentzTensor.Colors.down => x invFun x := match μ with | RealLorentzTensor.Colors.up => x | RealLorentzTensor.Colors.down => x left_inv x := by cases μ <;> rfl right_inv x := by cases μ <;> rfl /-- An equivalence of `ColorsIndex` types given an equality of a color and the dual of a color. -/ def colorsIndexDualCast {μ ν : Colors} (h : μ = τ ν) : ColorsIndex d μ ≃ ColorsIndex d ν := (colorsIndexCast h).trans colorsIndexDualCastSelf.symm lemma colorsIndexDualCast_symm {μ ν : Colors} (h : μ = τ ν) : (colorsIndexDualCast h).symm = @colorsIndexDualCast d _ _ ((Function.Involutive.eq_iff τ_involutive).mp h.symm) := by match μ, ν with | Colors.up, Colors.down => rfl | Colors.down, Colors.up => rfl /-! ## Index values -/ instance [Fintype X] [DecidableEq X] : Fintype (IndexValue d c) := Pi.fintype instance [Fintype X] : DecidableEq (IndexValue d c) := Fintype.decidablePiFintype /-! ## Induced isomorphisms between IndexValue sets -/ /-- An isomorphism of the type of index values given an isomorphism of sets. -/ @[simps!] def indexValueIso (d : ℕ) (f : X ≃ Y) {i : X → Colors} {j : Y → Colors} (h : i = j ∘ f) : IndexValue d i ≃ IndexValue d j := (Equiv.piCongrRight (fun μ => colorsIndexCast (congrFun h μ))).trans $ Equiv.piCongrLeft (fun y => RealLorentzTensor.ColorsIndex d (j y)) f lemma indexValueIso_symm_apply' (d : ℕ) (f : X ≃ Y) {i : X → Colors} {j : Y → Colors} (h : i = j ∘ f) (y : IndexValue d j) (x : X) : (indexValueIso d f h).symm y x = (colorsIndexCast (congrFun h x)).symm (y (f x)) := by rfl @[simp] lemma indexValueIso_trans (d : ℕ) (f : X ≃ Y) (g : Y ≃ Z) {i : X → Colors} {j : Y → Colors} {k : Z → Colors} (h : i = j ∘ f) (h' : j = k ∘ g) : (indexValueIso d f h).trans (indexValueIso d g h') = indexValueIso d (f.trans g) (by rw [h, h', Function.comp.assoc]; rfl) := by have h1 : ((indexValueIso d f h).trans (indexValueIso d g h')).symm = (indexValueIso d (f.trans g) (by rw [h, h', Function.comp.assoc]; rfl)).symm := by subst h' h exact Equiv.coe_inj.mp rfl simpa only [Equiv.symm_symm] using congrArg (fun e => e.symm) h1 lemma indexValueIso_symm (d : ℕ) (f : X ≃ Y) (h : i = j ∘ f) : (indexValueIso d f h).symm = indexValueIso d f.symm ((Equiv.eq_comp_symm f j i).mpr (id (Eq.symm h))) := by ext i : 1 rw [← Equiv.symm_apply_eq] funext y rw [indexValueIso_symm_apply', indexValueIso_symm_apply'] simp [colorsIndexCast] apply cast_eq_iff_heq.mpr rw [Equiv.apply_symm_apply] lemma indexValueIso_eq_symm (d : ℕ) (f : X ≃ Y) (h : i = j ∘ f) : indexValueIso d f h = (indexValueIso d f.symm ((Equiv.eq_comp_symm f j i).mpr (id (Eq.symm h)))).symm := by rw [indexValueIso_symm] rfl @[simp] lemma indexValueIso_refl (d : ℕ) (i : X → Colors) : indexValueIso d (Equiv.refl X) (rfl : i = i) = Equiv.refl _ := by rfl /-! ## Extensionality -/ lemma ext {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color) (h' : T₁.coord = fun i => T₂.coord (indexValueIso d (Equiv.refl X) h i)) : T₁ = T₂ := by cases T₁ cases T₂ simp_all only [IndexValue, mk.injEq] apply And.intro h simp only at h subst h simp only [Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] at h' rfl /-! ## Mapping isomorphisms. -/ /-- An equivalence of Tensors given an equivalence of underlying sets. -/ @[simps!] def mapIso (d : ℕ) (f : X ≃ Y) : RealLorentzTensor d X ≃ RealLorentzTensor d Y where toFun T := { color := T.color ∘ f.symm, coord := T.coord ∘ (indexValueIso d f (by simp : T.color = T.color ∘ f.symm ∘ f)).symm} invFun T := { color := T.color ∘ f, coord := T.coord ∘ (indexValueIso d f.symm (by simp : T.color = T.color ∘ f ∘ f.symm)).symm} left_inv T := by refine ext ?_ ?_ · simp [Function.comp.assoc] · funext i simp only [IndexValue, Function.comp_apply, Function.comp_id] apply congrArg funext x erw [indexValueIso_symm_apply', indexValueIso_symm_apply', indexValueIso_eq_symm, indexValueIso_symm_apply'] rw [← Equiv.apply_eq_iff_eq_symm_apply] simp only [Equiv.refl_symm, Equiv.coe_refl, Function.comp_apply, id_eq, colorsIndexCast, Equiv.cast_symm, Equiv.cast_apply, cast_cast, Equiv.refl_apply] apply cast_eq_iff_heq.mpr congr exact Equiv.symm_apply_apply f x right_inv T := by refine ext ?_ ?_ · simp [Function.comp.assoc] · funext i simp only [IndexValue, Function.comp_apply, Function.comp_id] apply congrArg funext x erw [indexValueIso_symm_apply', indexValueIso_symm_apply', indexValueIso_eq_symm, indexValueIso_symm_apply'] rw [← Equiv.apply_eq_iff_eq_symm_apply] simp only [Equiv.refl_symm, Equiv.coe_refl, Function.comp_apply, id_eq, colorsIndexCast, Equiv.cast_symm, Equiv.cast_apply, cast_cast, Equiv.refl_apply] apply cast_eq_iff_heq.mpr congr exact Equiv.apply_symm_apply f x @[simp] lemma mapIso_trans (f : X ≃ Y) (g : Y ≃ Z) : (mapIso d f).trans (mapIso d g) = mapIso d (f.trans g) := by refine Equiv.coe_inj.mp ?_ funext T refine ext rfl ?_ simp only [Equiv.trans_apply, IndexValue, mapIso_apply_color, Equiv.symm_trans_apply, indexValueIso_refl, Equiv.refl_apply, mapIso_apply_coord] funext i rw [mapIso_apply_coord, mapIso_apply_coord] apply congrArg rw [← indexValueIso_trans] rfl exact (Equiv.comp_symm_eq f (T.color ∘ ⇑f.symm) T.color).mp rfl lemma mapIso_symm (f : X ≃ Y) : (mapIso d f).symm = mapIso d f.symm := rfl lemma mapIso_refl : mapIso d (Equiv.refl X) = Equiv.refl _ := rfl /-! ## Sums -/ /-- An equivalence splitting elements of `IndexValue d (Sum.elim TX TY)` into two components. -/ def indexValueSumEquiv {X Y : Type} {TX : X → Colors} {TY : Y → Colors} : IndexValue d (Sum.elim TX TY) ≃ IndexValue d TX × IndexValue d TY where toFun i := (fun x => i (Sum.inl x), fun x => i (Sum.inr x)) invFun p := fun c => match c with | Sum.inl x => (p.1 x) | Sum.inr x => (p.2 x) left_inv i := by simp only [IndexValue] ext1 x cases x with | inl val => rfl | inr val_1 => rfl right_inv p := rfl /-- An equivalence between index values formed by commuting sums. -/ def indexValueSumComm {X Y : Type} (Tc : X → Colors) (Sc : Y → Colors) : IndexValue d (Sum.elim Tc Sc) ≃ IndexValue d (Sum.elim Sc Tc) := indexValueIso d (Equiv.sumComm X Y) (by aesop) /-! ## Marked Lorentz tensors To define contraction and multiplication of Lorentz tensors we need to mark indices. -/ /-- A `RealLorentzTensor` with `n` marked indices. -/ def Marked (d : ℕ) (X : Type) (n : ℕ) : Type := RealLorentzTensor d (X ⊕ Fin n) namespace Marked variable {n m : ℕ} /-- The marked point. -/ def markedPoint (X : Type) (i : Fin n) : (X ⊕ Fin n) := Sum.inr i /-- The colors of unmarked indices. -/ def unmarkedColor (T : Marked d X n) : X → Colors := T.color ∘ Sum.inl /-- The colors of marked indices. -/ def markedColor (T : Marked d X n) : Fin n → Colors := T.color ∘ Sum.inr /-- The index values restricted to unmarked indices. -/ def UnmarkedIndexValue (T : Marked d X n) : Type := IndexValue d T.unmarkedColor instance [Fintype X] [DecidableEq X] (T : Marked d X n) : Fintype T.UnmarkedIndexValue := Pi.fintype instance [Fintype X] (T : Marked d X n) : DecidableEq T.UnmarkedIndexValue := Fintype.decidablePiFintype /-- The index values restricted to marked indices. -/ def MarkedIndexValue (T : Marked d X n) : Type := IndexValue d T.markedColor instance (T : Marked d X n) : Fintype T.MarkedIndexValue := Pi.fintype instance (T : Marked d X n) : DecidableEq T.MarkedIndexValue := Fintype.decidablePiFintype lemma color_eq_elim (T : Marked d X n) : T.color = Sum.elim T.unmarkedColor T.markedColor := by ext1 x cases' x <;> rfl /-- An equivalence splitting elements of `IndexValue d T.color` into their two components. -/ def splitIndexValue {T : Marked d X n} : IndexValue d T.color ≃ T.UnmarkedIndexValue × T.MarkedIndexValue := (indexValueIso d (Equiv.refl _) T.color_eq_elim).trans indexValueSumEquiv @[simp] lemma splitIndexValue_sum {T : Marked d X n} [Fintype X] [DecidableEq X] (P : T.UnmarkedIndexValue × T.MarkedIndexValue → ℝ) : ∑ i, P (splitIndexValue i) = ∑ j, ∑ k, P (j, k) := by rw [Equiv.sum_comp splitIndexValue, Fintype.sum_prod_type] /-- Contruction of marked index values for the case of 1 marked index. -/ def oneMarkedIndexValue {T : Marked d X 1} : ColorsIndex d (T.color (markedPoint X 0)) ≃ T.MarkedIndexValue where toFun x := fun i => match i with | 0 => x invFun i := i 0 left_inv x := rfl right_inv i := by funext x fin_cases x rfl /-- Contruction of marked index values for the case of 2 marked index. -/ def twoMarkedIndexValue (T : Marked d X 2) (x : ColorsIndex d (T.color (markedPoint X 0))) (y : ColorsIndex d <| T.color <| markedPoint X 1) : T.MarkedIndexValue := fun i => match i with | 0 => x | 1 => y /-- An equivalence of types used to turn the first marked index into an unmarked index. -/ def unmarkFirstSet (X : Type) (n : ℕ) : (X ⊕ Fin n.succ) ≃ (X ⊕ Fin 1) ⊕ Fin n := trans (Equiv.sumCongr (Equiv.refl _) $ (((Fin.castOrderIso (Nat.succ_eq_one_add n)).toEquiv.trans finSumFinEquiv.symm))) (Equiv.sumAssoc _ _ _).symm /-- Unmark the first marked index of a marked thensor. -/ def unmarkFirst {X : Type} : Marked d X n.succ ≃ Marked d (X ⊕ Fin 1) n := mapIso d (unmarkFirstSet X n) end Marked /-! ## Contraction of indices -/ open Marked /-- The contraction of the marked indices in a tensor with two marked indices. -/ def contr {X : Type} (T : Marked d X 2) (h : T.markedColor 0 = τ (T.markedColor 1)) : RealLorentzTensor d X where color := T.unmarkedColor coord := fun i => ∑ x, T.coord (splitIndexValue.symm (i, T.twoMarkedIndexValue x $ colorsIndexDualCast h x)) /-! TODO: Following the ethos of modular operads, prove properties of contraction. -/ /-! TODO: Use `contr` to generalize to any pair of marked index. -/ /-! ## Rising and lowering indices Rising or lowering an index corresponds to changing the color of that index. -/ /-! TODO: Define the rising and lowering of indices using contraction with the metric. -/ /-! ## Graphical species and Lorentz tensors -/ /-! TODO: From Lorentz tensors graphical species. -/ /-! TODO: Show that the action of the Lorentz group defines an action on the graphical species. -/ end RealLorentzTensor