/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.TensorSpecies.Basic /-! # Pure tensors A pure tensor is one of the form `ψ1 ⊗ ψ2 ⊗ ... ⊗ ψn`. We say a tensor is pure if it is of this form. -/ open IndexNotation open CategoryTheory open MonoidalCategory noncomputable section namespace TensorSpecies variable (S : TensorSpecies) /-- The type of tensors specified by a map to colors `c : OverColor S.C`. -/ def Pure (c : OverColor S.C) : Type := (i : c.left) → S.FD.obj (Discrete.mk (c.hom i)) namespace Pure variable {S : TensorSpecies} {c : OverColor S.C} /-- The group action on a pure tensor. -/ def ρ (g : S.G) (p : Pure S c) : Pure S c := fun i ↦ (S.FD.obj (Discrete.mk (c.hom i))).ρ g (p i) /-- The underlying tensor of a pure tensor. -/ def tprod (p : Pure S c) : S.F.obj c := PiTensorProduct.tprod S.k p /-- The map `tprod` is equivariant with respect to the group action. -/ lemma tprod_equivariant (g : S.G) (p : Pure S c) : (ρ g p).tprod = (S.F.obj c).ρ g p.tprod := by simp only [F_def, OverColor.lift, OverColor.lift.obj', LaxBraidedFunctor.of_toFunctor, OverColor.lift.objObj', Functor.id_obj, Rep.coe_of, tprod, Rep.of_ρ, MonoidHom.coe_mk, OneHom.coe_mk, PiTensorProduct.map_tprod] rfl end Pure /-- A tensor is pure if it is `⨂[S.k] i, p i` for some `p : Pure c`. -/ def IsPure {c : OverColor S.C} (t : S.F.obj c) : Prop := ∃ p : Pure S c, t = p.tprod /-- As long as we are dealing with tensors with at least one index, then the zero tensor is pure. -/ lemma zero_isPure {c : OverColor S.C} [h : Nonempty c.left] : @IsPure S c 0 := by refine ⟨fun i => 0, ?_⟩ simp only [Pure.tprod, Functor.id_obj] change 0 = PiTensorProduct.tprodCoeff S.k 1 fun i => 0 symm apply PiTensorProduct.zero_tprodCoeff' (1 : S.k) rfl exact (Classical.inhabited_of_nonempty h).default @[simp] lemma Pure.tprod_isPure {c : OverColor S.C} (p : Pure S c) : S.IsPure p.tprod := ⟨p, rfl⟩ @[simp] lemma action_isPure_iff_isPure {c : OverColor S.C} {ψ : S.F.obj c} (g : S.G) : S.IsPure ((S.F.obj c).ρ g ψ) ↔ S.IsPure ψ := by refine Iff.intro (fun h => ?_) (fun h => ?_) · obtain ⟨p, hp⟩ := h have hp' := congrArg ((S.F.obj c).ρ g⁻¹) hp simp only [Rep.ρ_inv_self_apply] at hp' rw [← Pure.tprod_equivariant] at hp' subst hp' exact Pure.tprod_isPure S (Pure.ρ g⁻¹ p) · obtain ⟨p, hp⟩ := h subst hp rw [← Pure.tprod_equivariant] exact Pure.tprod_isPure S (Pure.ρ g p) end TensorSpecies end