/- Copyright (c) 2025 Gordon Hsu. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Gordon Hsu -/ import Mathlib.LinearAlgebra.Eigenspace.Triangularizable import Mathlib.LinearAlgebra.Matrix.Spectrum /-! # Schur triangulation Schur triangulation is more commonly known as Schur decomposition or Schur triangularization, but "triangulation" makes the API more readable. It states that a square matrix over an algebraically closed field, e.g., `ℂ`, is unitarily similar to an upper triangular matrix. ## Main definitions - `Matrix.schur_triangulation` : a matrix `A : Matrix n n 𝕜` with `𝕜` being algebraically closed can be decomposed as `A = U * T * star U` where `U` is unitary and `T` is upper triangular. - `Matrix.schurTriangulationUnitary` : the unitary matrix `U` as previously stated. - `Matrix.schurTriangulation` : the upper triangular matrix `T` as previously stated. - Some auxiliary definitions are not meant to be used directly, but `LinearMap.SchurTriangulationAux.of` contains the main algorithm for the triangulation procedure. -/ open scoped InnerProductSpace /-- `subNat' i h` subtracts `m` from `i`. This is an alternative form of `Fin.subNat`. -/ @[inline] def Fin.subNat' (i : Fin (m + n)) (h : ¬ i < m) : Fin n := subNat m (Fin.cast (m.add_comm n) i) (Nat.ge_of_not_lt h) namespace Equiv /-- An alternative form of `Equiv.sumEquivSigmaBool` where `Bool.casesOn` is replaced by `cond`. -/ def sumEquivSigmalCond : Fin m ⊕ Fin n ≃ Σ b, cond b (Fin m) (Fin n) := calc Fin m ⊕ Fin n _ ≃ Fin n ⊕ Fin m := sumComm .. _ ≃ Σ b, bif b then (Fin m) else (Fin n) := sumEquivSigmaBool .. _ ≃ Σ b, cond b (Fin m) (Fin n) := sigmaCongrRight (fun | true | false => Equiv.refl _) /-- The composition of `finSumFinEquiv` and `Equiv.sumEquivSigmalCond` used by `LinearMap.SchurTriangulationAux.of`. -/ def finAddEquivSigmaCond : Fin (m + n) ≃ Σ b, cond b (Fin m) (Fin n) := finSumFinEquiv.symm.trans sumEquivSigmalCond variable {i : Fin (m + n)} lemma finAddEquivSigmaCond_true (h : i < m) : finAddEquivSigmaCond i = ⟨true, i, h⟩ := congrArg sumEquivSigmalCond <| finSumFinEquiv_symm_apply_castAdd ⟨i, h⟩ lemma finAddEquivSigmaCond_false (h : ¬ i < m) : finAddEquivSigmaCond i = ⟨false, i.subNat' h⟩ := let j : Fin n := i.subNat' h calc finAddEquivSigmaCond i _ = finAddEquivSigmaCond (Fin.natAdd m j) := suffices m + (i - m) = i from congrArg _ (Fin.ext this.symm) Nat.add_sub_of_le (Nat.le_of_not_gt h) _ = ⟨false, i.subNat' h⟩ := congrArg sumEquivSigmalCond <| finSumFinEquiv_symm_apply_natAdd j end Equiv /-- The type family parameterized by `Bool` is finite if each type variant is finite. -/ instance [M : Fintype m] [N : Fintype n] (b : Bool) : Fintype (cond b m n) := b.rec N M /-- The type family parameterized by `Bool` has decidable equality if each type variant is decidable. -/ instance [DecidableEq m] [DecidableEq n] : DecidableEq (Σ b, cond b m n) | ⟨true, _⟩, ⟨false, _⟩ | ⟨false, _⟩, ⟨true, _⟩ => isFalse nofun | ⟨false, i⟩, ⟨false, j⟩ | ⟨true, i⟩, ⟨true, j⟩ => if h : i = j then isTrue (Sigma.eq rfl h) else isFalse fun | rfl => h rfl namespace Matrix /-- The property of a matrix being upper triangular. See also `Matrix.det_of_upperTriangular`. -/ abbrev IsUpperTriangular [LT n] [CommRing R] (A : Matrix n n R) := A.BlockTriangular id /-- The subtype of upper triangular matrices. -/ abbrev UpperTriangular (n R) [LT n] [CommRing R] := { A : Matrix n n R // A.IsUpperTriangular } end Matrix namespace LinearMap variable [RCLike 𝕜] section variable [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] section variable [FiniteDimensional 𝕜 E] [Fintype n] [DecidableEq n] lemma toMatrixOrthonormal_apply_apply (b : OrthonormalBasis n 𝕜 E) (f : Module.End 𝕜 E) (i j : n) : toMatrixOrthonormal b f i j = ⟪b i, f (b j)⟫_𝕜 := calc _ = b.repr (f (b j)) i := f.toMatrix_apply .. _ = ⟪b i, f (b j)⟫_𝕜 := b.repr_apply_apply .. lemma toMatrixOrthonormal_reindex [Fintype m] [DecidableEq m] (b : OrthonormalBasis m 𝕜 E) (e : m ≃ n) (f : Module.End 𝕜 E) : toMatrixOrthonormal (b.reindex e) f = Matrix.reindex e e (toMatrixOrthonormal b f) := Matrix.ext fun i j => calc toMatrixOrthonormal (b.reindex e) f i j _ = (b.reindex e).repr (f (b.reindex e j)) i := f.toMatrix_apply .. _ = b.repr (f (b (e.symm j))) (e.symm i) := by simp _ = toMatrixOrthonormal b f (e.symm i) (e.symm j) := Eq.symm <| f.toMatrix_apply .. end /-- **Don't use this definition directly.** Instead, use `Matrix.schurTriangulationBasis`, `Matrix.schurTriangulationUnitary`, and `Matrix.schurTriangulation`. See also `LinearMap.SchurTriangulationAux.of` and `Matrix.schurTriangulationAux`. -/ structure SchurTriangulationAux (f : Module.End 𝕜 E) where /-- The dimension of the inner product space `E`. -/ dim : ℕ hdim : Module.finrank 𝕜 E = dim /-- An orthonormal basis of `E` that induces an upper triangular form for `f`. -/ basis : OrthonormalBasis (Fin dim) 𝕜 E upperTriangular : (toMatrix basis.toBasis basis.toBasis f).IsUpperTriangular end /-! ## Schur's recursive triangulation procedure Given a linear endomorphism `f` on a non-trivial finite-dimensional vector space `E` over an algebraically closed field `𝕜`, one can always pick an eigenvalue `μ` of `f` whose corresponding eigenspace `V` is non-trivial. Given that `E` is also an inner product space, let `bV` and `bW` be orthonormal bases for `V` and `Vᗮ` respectively. Then, the collection of vectors in `bV` and `bW` forms an orthonormal basis `bE` for `E`, as the direct sum of `V` and `Vᗮ` is an internal decomposition of `E`. The matrix representation of `f` with respect to `bE` satisfies $$ \sideset{_\mathrm{bE}}{_\mathrm{bE}}{[f]} = \begin{bmatrix} \sideset{_\mathrm{bV}}{_\mathrm{bV}}{[f]} & \sideset{_\mathrm{bW}}{_\mathrm{bV}}{[f]} \\ \sideset{_\mathrm{bV}}{_\mathrm{bW}}{[f]} & \sideset{_\mathrm{bW}}{_\mathrm{bW}}{[f]} \end{bmatrix} = \begin{bmatrix} \mu I & □ \\ 0 & \sideset{_\mathrm{bW}}{_\mathrm{bW}}{[f]} \end{bmatrix}, $$ which is upper triangular as long as $\sideset{_\mathrm{bW}}{_\mathrm{bW}}{[f]}$ is. Finally, one observes that the recursion from $\sideset{_\mathrm{bE}}{_\mathrm{bE}}{[f]}$ to $\sideset{_\mathrm{bW}}{_\mathrm{bW}}{[f]}$ is well-founded, as the dimension of `bW` is smaller than that of `bE` because `bV` is non-trivial. However, in order to leverage `DirectSum.IsInternal.collectedOrthonormalBasis`, the type `Σ b, cond b (Fin m) (Fin n)` has to be used instead of the more natural `Fin m ⊕ Fin n` while their equivalence is propositionally established by `Equiv.sumEquivSigmalCond`. -/ variable [IsAlgClosed 𝕜] /-- **Don't use this definition directly.** This is the key algorithm behind `Matrix.schur_triangulation`. -/ protected noncomputable def SchurTriangulationAux.of [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (f : Module.End 𝕜 E) : SchurTriangulationAux f := haveI : Decidable (Nontrivial E) := Classical.propDecidable _ if hE : Nontrivial E then let μ : f.Eigenvalues := default let V : Submodule 𝕜 E := f.eigenspace μ let W : Submodule 𝕜 E := Vᗮ let m := Module.finrank 𝕜 V have hdim : m + Module.finrank 𝕜 W = Module.finrank 𝕜 E := V.finrank_add_finrank_orthogonal let g : Module.End 𝕜 W := orthogonalProjection W ∘ₗ f.domRestrict W let ⟨n, hn, bW, hg⟩ := SchurTriangulationAux.of g have bV : OrthonormalBasis (Fin m) 𝕜 V := stdOrthonormalBasis 𝕜 V have hV := V.orthogonalFamily_self have int : DirectSum.IsInternal (cond · V W) := suffices ⨆ b, cond b V W = ⊤ from (hV.decomposition this).isInternal _ (sup_eq_iSup V W).symm.trans Submodule.sup_orthogonal_of_completeSpace let B (b : Bool) : OrthonormalBasis (cond b (Fin m) (Fin n)) 𝕜 ↥(cond b V W) := b.rec bW bV let bE : OrthonormalBasis (Σ b, cond b (Fin m) (Fin n)) 𝕜 E := int.collectedOrthonormalBasis hV B let e := Equiv.finAddEquivSigmaCond let basis := bE.reindex e.symm { basis dim := m + n hdim := hn ▸ hdim.symm upperTriangular := fun i j (hji : j < i) => show toMatrixOrthonormal basis f i j = 0 from have hB : ∀ s, bE s = B s.1 s.2 | ⟨true, i⟩ => show bE ⟨true, i⟩ = bV i from show (int.collectedBasis fun b => (B b).toBasis).toOrthonormalBasis _ ⟨true, i⟩ = bV i by simp [B] | ⟨false, j⟩ => show bE ⟨false, j⟩ = bW j from show (int.collectedBasis fun b => (B b).toBasis).toOrthonormalBasis _ ⟨false, j⟩ = bW j by simp [B] have hf {bi i' bj j'} (hi : e i = ⟨bi, i'⟩) (hj : e j = ⟨bj, j'⟩) := calc toMatrixOrthonormal basis f i j _ = toMatrixOrthonormal bE f (e i) (e j) := by rw [f.toMatrixOrthonormal_reindex] rfl _ = ⟪bE (e i), f (bE (e j))⟫_𝕜 := f.toMatrixOrthonormal_apply_apply .. _ = ⟪(B bi i' : E), f (B bj j')⟫_𝕜 := by rw [hB, hB, hi, hj] if hj : j < m then let j' : Fin m := ⟨j, hj⟩ have hf' {bi i'} (hi : e i = ⟨bi, i'⟩) (h0 : ⟪(B bi i' : E), bV j'⟫_𝕜 = 0) := calc toMatrixOrthonormal basis f i j _ = ⟪(B bi i' : E), f _⟫_𝕜 := hf hi (Equiv.finAddEquivSigmaCond_true hj) _ = ⟪_, f (bV j')⟫_𝕜 := rfl _ = 0 := suffices f (bV j') = μ.val • bV j' by rw [this, inner_smul_right, h0, mul_zero] suffices f.HasEigenvector μ (bV j') from this.apply_eq_smul ⟨(bV j').property, fun h => bV.toBasis.ne_zero j' (Subtype.ext h)⟩ if hi : i < m then let i' : Fin m := ⟨i, hi⟩ suffices ⟪(bV i' : E), bV j'⟫_𝕜 = 0 from hf' (Equiv.finAddEquivSigmaCond_true hi) this bV.orthonormal.right (Fin.ne_of_gt hji) else let i' : Fin n := i.subNat' hi suffices ⟪(bW i' : E), bV j'⟫_𝕜 = 0 from hf' (Equiv.finAddEquivSigmaCond_false hi) this V.inner_left_of_mem_orthogonal (bV j').property (bW i').property else have hi (h : i < m) : False := hj (Nat.lt_trans hji h) let i' : Fin n := i.subNat' hi let j' : Fin n := j.subNat' hj calc toMatrixOrthonormal basis f i j _ = ⟪(bW i' : E), f (bW j')⟫_𝕜 := hf (Equiv.finAddEquivSigmaCond_false hi) (Equiv.finAddEquivSigmaCond_false hj) _ = ⟪bW i', g (bW j')⟫_𝕜 := by simp [g] _ = toMatrixOrthonormal bW g i' j' := (g.toMatrixOrthonormal_apply_apply ..).symm _ = 0 := hg (Nat.sub_lt_sub_right (Nat.le_of_not_lt hj) hji) } else haveI : Subsingleton E := not_nontrivial_iff_subsingleton.mp hE { dim := 0 hdim := Module.finrank_zero_of_subsingleton basis := (Basis.empty E).toOrthonormalBasis ⟨nofun, nofun⟩ upperTriangular := nofun } termination_by Module.finrank 𝕜 E decreasing_by exact calc Module.finrank 𝕜 W _ < m + Module.finrank 𝕜 W := suffices 0 < m from Nat.lt_add_of_pos_left this Submodule.one_le_finrank_iff.mpr μ.property _ = Module.finrank 𝕜 E := hdim end LinearMap namespace Matrix /- IMPORTANT: existing `DecidableEq n` should take precedence over `LinearOrder.decidableEq`, a.k.a., `instDecidableEq_mathlib`. -/ variable [RCLike 𝕜] [IsAlgClosed 𝕜] [Fintype n] [DecidableEq n] [LinearOrder n] (A : Matrix n n 𝕜) /-- **Don't use this definition directly.** Instead, use `Matrix.schurTriangulationBasis`, `Matrix.schurTriangulationUnitary`, and `Matrix.schurTriangulation` for which this is their simultaneous definition. This is `LinearMap.SchurTriangulationAux` adapted for matrices in the Euclidean space. -/ noncomputable def schurTriangulationAux : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) × UpperTriangular n 𝕜 := let f := toEuclideanLin A let ⟨d, hd, b, hut⟩ := LinearMap.SchurTriangulationAux.of f let e : Fin d ≃o n := Fintype.orderIsoFinOfCardEq n (finrank_euclideanSpace.symm.trans hd) let b' := b.reindex e let B := LinearMap.toMatrixOrthonormal b' f suffices B.IsUpperTriangular from ⟨b', B, this⟩ fun i j (hji : j < i) => calc LinearMap.toMatrixOrthonormal b' f i j _ = LinearMap.toMatrixOrthonormal b f (e.symm i) (e.symm j) := by rw [f.toMatrixOrthonormal_reindex] rfl _ = 0 := hut (e.symm.lt_iff_lt.mpr hji) /-- The change of basis that induces the upper triangular form `A.schurTriangulation` of a matrix `A` over an algebraically closed field. -/ noncomputable def schurTriangulationBasis : OrthonormalBasis n 𝕜 (EuclideanSpace 𝕜 n) := A.schurTriangulationAux.1 /-- The unitary matrix that induces the upper triangular form `A.schurTriangulation` to which a matrix `A` over an algebraically closed field is unitarily similar. -/ noncomputable def schurTriangulationUnitary : unitaryGroup n 𝕜 where val := (EuclideanSpace.basisFun n 𝕜).toBasis.toMatrix A.schurTriangulationBasis property := OrthonormalBasis.toMatrix_orthonormalBasis_mem_unitary .. /-- The upper triangular form induced by `A.schurTriangulationUnitary` to which a matrix `A` over an algebraically closed field is unitarily similar. -/ noncomputable def schurTriangulation : UpperTriangular n 𝕜 := A.schurTriangulationAux.2 /-- **Schur triangulation**, **Schur decomposition** for matrices over an algebraically closed field. In particular, a complex matrix can be converted to upper-triangular form by a change of basis. In other words, any complex matrix is unitarily similar to an upper triangular matrix. -/ lemma schur_triangulation : A = A.schurTriangulationUnitary * A.schurTriangulation * star A.schurTriangulationUnitary := let U := A.schurTriangulationUnitary have h : U * A.schurTriangulation.val = A * U := let b := A.schurTriangulationBasis.toBasis let c := (EuclideanSpace.basisFun n 𝕜).toBasis calc c.toMatrix b * LinearMap.toMatrix b b (toEuclideanLin A) _ = LinearMap.toMatrix c c (toEuclideanLin A) * c.toMatrix b := by simp _ = LinearMap.toMatrix c c (toLin c c A) * U := rfl _ = A * U := by simp calc A _ = A * U * star U := by simp [mul_assoc] _ = U * A.schurTriangulation * star U := by rw [← h] end Matrix