/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic import HepLean.AnomalyCancellation.SMNu.PlusU1.FamilyMaps /-! # B Minus L in SM with RHN. Relavent definitions for the SM `B-L`. -/ universe v u namespace SMRHN namespace PlusU1 open SMνCharges open SMνACCs open BigOperators variable {n : ℕ} /-- $B - L$ in the 1-family case. -/ @[simps!] def BL₁ : (PlusU1 1).Sols where val := fun i => match i with | (0 : Fin 6) => 1 | (1 : Fin 6) => -1 | (2 : Fin 6) => -1 | (3 : Fin 6) => -3 | (4 : Fin 6) => 3 | (5 : Fin 6) => 3 linearSol := by intro i simp at i match i with | 0 => rfl | 1 => rfl | 2 => rfl | 3 => rfl quadSol := by intro i simp at i match i with | 0 => rfl cubicSol := by rfl /-- $B - L$ in the $n$-family case. -/ @[simps!] def BL (n : ℕ) : (PlusU1 n).Sols := familyUniversalAF n BL₁ namespace BL variable {n : ℕ} lemma on_quadBiLin (S : (PlusU1 n).Charges) : quadBiLin (BL n).val S = 1/2 * accYY S + 3/2 * accSU2 S - 2 * accSU3 S := by erw [familyUniversal_quadBiLin] rw [accYY_decomp, accSU2_decomp, accSU3_decomp] simp only [Fin.isValue, BL₁_val, SMνSpecies_numberCharges, toSpecies_apply, one_mul, mul_neg, mul_one, neg_mul, sub_neg_eq_add, one_div] ring lemma on_quadBiLin_AFL (S : (PlusU1 n).LinSols) : quadBiLin (BL n).val S.val = 0 := by rw [on_quadBiLin] rw [YYsol S, SU2Sol S, SU3Sol S] simp lemma add_AFL_quad (S : (PlusU1 n).LinSols) (a b : ℚ) : accQuad (a • S.val + b • (BL n).val) = a ^ 2 * accQuad S.val := by erw [BiLinearSymm.toHomogeneousQuad_add, quadSol (b • (BL n)).1] rw [quadBiLin.map_smul₁, quadBiLin.map_smul₂, quadBiLin.swap, on_quadBiLin_AFL] erw [accQuad.map_smul] simp lemma add_quad (S : (PlusU1 n).QuadSols) (a b : ℚ) : accQuad (a • S.val + b • (BL n).val) = 0 := by rw [add_AFL_quad, quadSol S] exact Rat.mul_zero (a ^ 2) /-- The `QuadSol` obtained by adding $B-L$ to a `QuadSol`. -/ def addQuad (S : (PlusU1 n).QuadSols) (a b : ℚ) : (PlusU1 n).QuadSols := linearToQuad (a • S.1 + b • (BL n).1.1) (add_quad S a b) lemma addQuad_zero (S : (PlusU1 n).QuadSols) (a : ℚ) : addQuad S a 0 = a • S := by simp [addQuad, linearToQuad] rfl lemma on_cubeTriLin (S : (PlusU1 n).Charges) : cubeTriLin (BL n).val (BL n).val S = 9 * accGrav S - 24 * accSU3 S := by erw [familyUniversal_cubeTriLin'] rw [accGrav_decomp, accSU3_decomp] simp only [Fin.isValue, BL₁_val, mul_one, SMνSpecies_numberCharges, toSpecies_apply, mul_neg, neg_neg, neg_mul] ring lemma on_cubeTriLin_AFL (S : (PlusU1 n).LinSols) : cubeTriLin (BL n).val (BL n).val S.val = 0 := by rw [on_cubeTriLin] rw [gravSol S, SU3Sol S] simp lemma add_AFL_cube (S : (PlusU1 n).LinSols) (a b : ℚ) : accCube (a • S.val + b • (BL n).val) = a ^ 2 * (a * accCube S.val + 3 * b * cubeTriLin S.val S.val (BL n).val) := by erw [TriLinearSymm.toCubic_add, cubeSol (b • (BL n)), accCube.map_smul] repeat rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂, cubeTriLin.map_smul₃] rw [on_cubeTriLin_AFL] simp only [HomogeneousCubic, accCube, TriLinearSymm.toCubic_apply, Fin.isValue, add_zero, BL_val, mul_zero] ring end BL end PlusU1 end SMRHN