/- Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.PerturbationTheory.WickContraction.Join /-! # Sign associated with joining two Wick contractions -/ open FieldSpecification variable {𝓕 : FieldSpecification} namespace WickContraction variable {n : ℕ} (c : WickContraction n) open HepLean.List open FieldOpAlgebra open FieldStatistic lemma stat_signFinset_right {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) (φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (i j : Fin [φsΛ]ᵘᶜ.length) : (𝓕 |>ₛ ⟨[φsΛ]ᵘᶜ.get, φsucΛ.signFinset i j⟩) = (𝓕 |>ₛ ⟨φs.get, (φsucΛ.signFinset i j).map uncontractedListEmd⟩) := by simp only [ofFinset] congr 1 rw [← fin_finset_sort_map_monotone] simp only [List.map_map, List.map_inj_left, Finset.mem_sort, List.get_eq_getElem, Function.comp_apply, getElem_uncontractedListEmd, implies_true] intro i j h exact uncontractedListEmd_strictMono h lemma signFinset_right_map_uncontractedListEmd_eq_filter {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) (φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (i j : Fin [φsΛ]ᵘᶜ.length) : (φsucΛ.signFinset i j).map uncontractedListEmd = ((join φsΛ φsucΛ).signFinset (uncontractedListEmd i) (uncontractedListEmd j)).filter (fun c => c ∈ φsΛ.uncontracted) := by ext a simp only [Finset.mem_map, Finset.mem_filter] apply Iff.intro · intro h obtain ⟨a, ha, rfl⟩ := h apply And.intro · simp_all only [signFinset, Finset.mem_filter, Finset.mem_univ, true_and, join_getDual?_apply_uncontractedListEmb, Option.map_eq_none', Option.isSome_map'] apply And.intro · exact uncontractedListEmd_strictMono ha.1 · apply And.intro · exact uncontractedListEmd_strictMono ha.2.1 · have ha2 := ha.2.2 simp_all only [and_true] rcases ha2 with ha2 | ha2 · simp [ha2] · right intro h apply lt_of_lt_of_eq (uncontractedListEmd_strictMono (ha2 h)) rw [Option.get_map] · exact uncontractedListEmd_mem_uncontracted a · intro h have h2 := h.2 have h2' := uncontractedListEmd_surjective_mem_uncontracted a h.2 obtain ⟨a, rfl⟩ := h2' use a simp_all only [signFinset, Finset.mem_filter, Finset.mem_univ, join_getDual?_apply_uncontractedListEmb, Option.map_eq_none', Option.isSome_map', true_and, and_true, and_self] apply And.intro · have h1 := h.1 rw [StrictMono.lt_iff_lt] at h1 exact h1 exact fun _ _ h => uncontractedListEmd_strictMono h · apply And.intro · have h1 := h.2.1 rw [StrictMono.lt_iff_lt] at h1 exact h1 exact fun _ _ h => uncontractedListEmd_strictMono h · have h1 := h.2.2 simp_all only [and_true] rcases h1 with h1 | h1 · simp [h1] · right intro h have h1' := h1 h have hl : uncontractedListEmd i < uncontractedListEmd ((φsucΛ.getDual? a).get h) := by apply lt_of_lt_of_eq h1' simp [Option.get_map] rw [StrictMono.lt_iff_lt] at hl exact hl exact fun _ _ h => uncontractedListEmd_strictMono h lemma sign_right_eq_prod_mul_prod {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) (φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) : φsucΛ.sign = (∏ a, 𝓢(𝓕|>ₛ [φsΛ]ᵘᶜ[φsucΛ.sndFieldOfContract a], 𝓕|>ₛ ⟨φs.get, ((join φsΛ φsucΛ).signFinset (uncontractedListEmd (φsucΛ.fstFieldOfContract a)) (uncontractedListEmd (φsucΛ.sndFieldOfContract a))).filter (fun c => ¬ c ∈ φsΛ.uncontracted)⟩)) * (∏ a, 𝓢(𝓕|>ₛ [φsΛ]ᵘᶜ[φsucΛ.sndFieldOfContract a], 𝓕|>ₛ ⟨φs.get, ((join φsΛ φsucΛ).signFinset (uncontractedListEmd (φsucΛ.fstFieldOfContract a)) (uncontractedListEmd (φsucΛ.sndFieldOfContract a)))⟩)) := by rw [← Finset.prod_mul_distrib, sign] congr funext a rw [← map_mul] congr rw [stat_signFinset_right, signFinset_right_map_uncontractedListEmd_eq_filter] rw [ofFinset_filter] lemma join_singleton_signFinset_eq_filter {φs : List 𝓕.FieldOp} {i j : Fin φs.length} (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length) : (join (singleton h) φsucΛ).signFinset i j = ((singleton h).signFinset i j).filter (fun c => ¬ (((join (singleton h) φsucΛ).getDual? c).isSome ∧ ((h1 : ((join (singleton h) φsucΛ).getDual? c).isSome) → (((join (singleton h) φsucΛ).getDual? c).get h1) < i))) := by ext a simp only [signFinset, Finset.mem_filter, Finset.mem_univ, true_and, not_and, not_forall, not_lt, and_assoc, and_congr_right_iff] intro h1 h2 have h1 : (singleton h).getDual? a = none := by rw [singleton_getDual?_eq_none_iff_neq] omega simp only [h1, Option.isSome_none, Bool.false_eq_true, IsEmpty.forall_iff, or_self, true_and] apply Iff.intro · intro h1 h2 rcases h1 with h1 | h1 · simp only [h1, Option.isSome_none, Bool.false_eq_true, IsEmpty.exists_iff] have h2' : ¬ (((singleton h).join φsucΛ).getDual? a).isSome := by exact Option.not_isSome_iff_eq_none.mpr h1 exact h2' h2 use h2 have h1 := h1 h2 omega · intro h2 by_cases h2' : (((singleton h).join φsucΛ).getDual? a).isSome = true · have h2 := h2 h2' obtain ⟨hb, h2⟩ := h2 right intro hl apply lt_of_le_of_ne h2 by_contra hn have hij : ((singleton h).join φsucΛ).getDual? i = j := by rw [@getDual?_eq_some_iff_mem] simp [join, singleton] simp only [hn, getDual?_getDual?_get_get, Option.some.injEq] at hij omega · simp only [Bool.not_eq_true, Option.not_isSome, Option.isNone_iff_eq_none] at h2' simp [h2'] lemma join_singleton_left_signFinset_eq_filter {φs : List 𝓕.FieldOp} {i j : Fin φs.length} (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length) : (𝓕 |>ₛ ⟨φs.get, (singleton h).signFinset i j⟩) = (𝓕 |>ₛ ⟨φs.get, (join (singleton h) φsucΛ).signFinset i j⟩) * (𝓕 |>ₛ ⟨φs.get, ((singleton h).signFinset i j).filter (fun c => (((join (singleton h) φsucΛ).getDual? c).isSome ∧ ((h1 : ((join (singleton h) φsucΛ).getDual? c).isSome) → (((join (singleton h) φsucΛ).getDual? c).get h1) < i)))⟩) := by conv_rhs => left rw [join_singleton_signFinset_eq_filter] rw [mul_comm] exact (ofFinset_filter_mul_neg 𝓕.statesStatistic _ _ _).symm /-- The difference in sign between `φsucΛ.sign` and the direct contribution of `φsucΛ` to `(join (singleton h) φsucΛ)`. -/ def joinSignRightExtra {φs : List 𝓕.FieldOp} {i j : Fin φs.length} (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length) : ℂ := ∏ a, 𝓢(𝓕|>ₛ [singleton h]ᵘᶜ[φsucΛ.sndFieldOfContract a], 𝓕|>ₛ ⟨φs.get, ((join (singleton h) φsucΛ).signFinset (uncontractedListEmd (φsucΛ.fstFieldOfContract a)) (uncontractedListEmd (φsucΛ.sndFieldOfContract a))).filter (fun c => ¬ c ∈ (singleton h).uncontracted)⟩) /-- The difference in sign between `(singleton h).sign` and the direct contribution of `(singleton h)` to `(join (singleton h) φsucΛ)`. -/ def joinSignLeftExtra {φs : List 𝓕.FieldOp} {i j : Fin φs.length} (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length) : ℂ := 𝓢(𝓕 |>ₛ φs[j], (𝓕 |>ₛ ⟨φs.get, ((singleton h).signFinset i j).filter (fun c => (((join (singleton h) φsucΛ).getDual? c).isSome ∧ ((h1 : ((join (singleton h) φsucΛ).getDual? c).isSome) → (((join (singleton h) φsucΛ).getDual? c).get h1) < i)))⟩)) lemma join_singleton_sign_left {φs : List 𝓕.FieldOp} {i j : Fin φs.length} (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length) : (singleton h).sign = 𝓢(𝓕 |>ₛ φs[j], (𝓕 |>ₛ ⟨φs.get, (join (singleton h) φsucΛ).signFinset i j⟩)) * (joinSignLeftExtra h φsucΛ) := by rw [singleton_sign_expand] rw [join_singleton_left_signFinset_eq_filter h φsucΛ] rw [map_mul] rfl lemma join_singleton_sign_right {φs : List 𝓕.FieldOp} {i j : Fin φs.length} (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length) : φsucΛ.sign = (joinSignRightExtra h φsucΛ) * (∏ a, 𝓢(𝓕|>ₛ [singleton h]ᵘᶜ[φsucΛ.sndFieldOfContract a], 𝓕|>ₛ ⟨φs.get, ((join (singleton h) φsucΛ).signFinset (uncontractedListEmd (φsucΛ.fstFieldOfContract a)) (uncontractedListEmd (φsucΛ.sndFieldOfContract a)))⟩)) := by rw [sign_right_eq_prod_mul_prod] rfl lemma joinSignRightExtra_eq_i_j_finset_eq_if {φs : List 𝓕.FieldOp} {i j : Fin φs.length} (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length) : joinSignRightExtra h φsucΛ = ∏ a, 𝓢((𝓕|>ₛ [singleton h]ᵘᶜ[φsucΛ.sndFieldOfContract a]), 𝓕 |>ₛ ⟨φs.get, (if uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j ∧ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) ∧ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i then {j} else ∅) ∪ (if uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i ∧ i < uncontractedListEmd (φsucΛ.sndFieldOfContract a) then {i} else ∅)⟩) := by rw [joinSignRightExtra] congr funext a congr rw [signFinset] rw [Finset.filter_comm] have h11 : (Finset.filter (fun c => c ∉ (singleton h).uncontracted) Finset.univ) = {i, j} := by ext x simp only [Finset.mem_filter, Finset.mem_univ, true_and, Finset.mem_insert, Finset.mem_singleton] rw [@mem_uncontracted_iff_not_contracted] simp only [singleton, Finset.mem_singleton, forall_eq, Finset.mem_insert, not_or, not_and, Decidable.not_not] omega rw [h11] ext x simp only [Finset.mem_filter, Finset.mem_insert, Finset.mem_singleton, Finset.mem_union] have hjneqfst := singleton_uncontractedEmd_neq_right h (φsucΛ.fstFieldOfContract a) have hjneqsnd := singleton_uncontractedEmd_neq_right h (φsucΛ.sndFieldOfContract a) have hineqfst := singleton_uncontractedEmd_neq_left h (φsucΛ.fstFieldOfContract a) have hineqsnd := singleton_uncontractedEmd_neq_left h (φsucΛ.sndFieldOfContract a) by_cases hj1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j · simp only [hj1, false_and, ↓reduceIte, Finset.not_mem_empty, false_or] have hi1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega simp only [hi1, false_and, ↓reduceIte, Finset.not_mem_empty, iff_false, not_and, not_or, not_forall, not_lt] intro hxij h1 h2 omega · have hj1 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j := by omega by_cases hi1 : ¬ i < uncontractedListEmd (φsucΛ.sndFieldOfContract a) · simp only [hi1, and_false, ↓reduceIte, Finset.not_mem_empty, or_false] have hj2 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega simp only [hj2, false_and, and_false, ↓reduceIte, Finset.not_mem_empty, iff_false, not_and, not_or, not_forall, not_lt] intro hxij h1 h2 omega · have hi1 : i < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega simp only [hj1, true_and, hi1, and_true] by_cases hi2 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i · simp only [hi2, and_false, ↓reduceIte, Finset.not_mem_empty, or_self, iff_false, not_and, not_or, not_forall, not_lt] by_cases hj3 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) · omega · have hj4 : j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega intro h rcases h with h | h · subst h omega · subst h simp only [join_singleton_getDual?_right, reduceCtorEq, not_false_eq_true, Option.get_some, Option.isSome_some, exists_const, true_and] omega · have hi2 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega simp only [hi2, and_true, ↓reduceIte, Finset.mem_singleton] by_cases hj3 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) · simp only [hj3, ↓reduceIte, Finset.not_mem_empty, false_or] apply Iff.intro · intro h omega · intro h subst h simp only [true_or, join_singleton_getDual?_left, reduceCtorEq, Option.isSome_some, Option.get_some, forall_const, false_or, true_and] omega · have hj3 : j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega simp only [hj3, ↓reduceIte, Finset.mem_singleton] apply Iff.intro · intro h omega · intro h rcases h with h1 | h1 · subst h1 simp only [or_true, join_singleton_getDual?_right, reduceCtorEq, Option.isSome_some, Option.get_some, forall_const, false_or, true_and] omega · subst h1 simp only [true_or, join_singleton_getDual?_left, reduceCtorEq, Option.isSome_some, Option.get_some, forall_const, false_or, true_and] omega lemma joinSignLeftExtra_eq_joinSignRightExtra {φs : List 𝓕.FieldOp} {i j : Fin φs.length} (h : i < j) (hs : (𝓕 |>ₛ φs[i]) = (𝓕 |>ₛ φs[j])) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length) : joinSignLeftExtra h φsucΛ = joinSignRightExtra h φsucΛ := by /- Simplifying joinSignLeftExtra. -/ let e2 : Fin φs.length ≃ {x // (((singleton h).join φsucΛ).getDual? x).isSome} ⊕ {x // ¬ (((singleton h).join φsucΛ).getDual? x).isSome} := by exact (Equiv.sumCompl fun a => (((singleton h).join φsucΛ).getDual? a).isSome = true).symm rw [joinSignLeftExtra, ofFinset_eq_prod, map_prod, ← e2.symm.prod_comp] simp only [Fin.getElem_fin, Fintype.prod_sum_type, instCommGroup] conv_lhs => enter [2, 2, x] simp only [Equiv.symm_symm, Equiv.sumCompl_apply_inl, Equiv.sumCompl_apply_inr, e2] rw [if_neg (by simp only [Finset.mem_filter, mem_signFinset, not_and, not_forall, not_lt, and_imp] intro h1 h2 have hx := x.2 simp_all)] simp only [Finset.mem_filter, mem_signFinset, map_one, Finset.prod_const_one, mul_one] rw [← ((singleton h).join φsucΛ).sigmaContractedEquiv.prod_comp] erw [Finset.prod_sigma] conv_lhs => enter [2, a] rw [prod_finset_eq_mul_fst_snd] simp [e2, sigmaContractedEquiv] rw [prod_join, singleton_prod] simp only [join_fstFieldOfContract_joinLiftLeft, singleton_fstFieldOfContract, join_sndFieldOfContract_joinLift, singleton_sndFieldOfContract, lt_self_iff_false, and_false, ↓reduceIte, map_one, mul_one, join_fstFieldOfContract_joinLiftRight, join_sndFieldOfContract_joinLiftRight, getElem_uncontractedListEmd] rw [if_neg (by omega)] simp only [map_one, one_mul] /- Introducing joinSignRightExtra. -/ rw [joinSignRightExtra_eq_i_j_finset_eq_if] congr funext a have hjneqsnd := singleton_uncontractedEmd_neq_right h (φsucΛ.sndFieldOfContract a) have hl : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by apply uncontractedListEmd_strictMono exact fstFieldOfContract_lt_sndFieldOfContract φsucΛ a by_cases hj1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j · have hi1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega simp [hj1, hi1] · have hj1 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j := by omega simp only [hj1, and_true, instCommGroup, Fin.getElem_fin, true_and] by_cases hi2 : ¬ i < uncontractedListEmd (φsucΛ.sndFieldOfContract a) · have hi1 : ¬ i < uncontractedListEmd (φsucΛ.fstFieldOfContract a) := by omega have hj2 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega simp [hi2, hj2, hi1] · have hi2 : i < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega have hi2n : ¬ uncontractedListEmd (φsucΛ.sndFieldOfContract a) < i := by omega simp only [hi2n, and_false, ↓reduceIte, map_one, hi2, true_and, one_mul, and_true] by_cases hj2 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) · simp only [hj2, false_and, ↓reduceIte, Finset.empty_union] have hj2 : uncontractedListEmd (φsucΛ.sndFieldOfContract a) < j:= by omega simp only [hj2, true_and] by_cases hi1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i · simp [hi1] · have hi1 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega simp only [hi1, ↓reduceIte, ofFinset_singleton, List.get_eq_getElem] erw [hs] exact exchangeSign_symm (𝓕|>ₛφs[↑j]) (𝓕|>ₛ[singleton h]ᵘᶜ[↑(φsucΛ.sndFieldOfContract a)]) · simp only [not_lt, not_le] at hj2 simp only [hj2, true_and] by_cases hi1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i · simp [hi1] · have hi1 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega simp only [hi1, and_true, ↓reduceIte] have hj2 : ¬ uncontractedListEmd (φsucΛ.sndFieldOfContract a) < j := by omega simp only [hj2, ↓reduceIte, map_one] rw [← ofFinset_union_disjoint] simp only [instCommGroup, ofFinset_singleton, List.get_eq_getElem, hs] erw [hs] simp only [Fin.getElem_fin, mul_self, map_one] simp only [Finset.disjoint_singleton_right, Finset.mem_singleton] exact Fin.ne_of_lt h lemma join_sign_singleton {φs : List 𝓕.FieldOp} {i j : Fin φs.length} (h : i < j) (hs : (𝓕 |>ₛ φs[i]) = (𝓕 |>ₛ φs[j])) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length) : (join (singleton h) φsucΛ).sign = (singleton h).sign * φsucΛ.sign := by rw [join_singleton_sign_right, join_singleton_sign_left h φsucΛ] rw [joinSignLeftExtra_eq_joinSignRightExtra h hs φsucΛ] rw [← mul_assoc, mul_assoc _ _ (joinSignRightExtra h φsucΛ)] have h1 : (joinSignRightExtra h φsucΛ * joinSignRightExtra h φsucΛ) = 1 := by rw [← joinSignLeftExtra_eq_joinSignRightExtra h hs φsucΛ] simp [joinSignLeftExtra] simp only [instCommGroup, Fin.getElem_fin, h1, mul_one] rw [sign, prod_join] congr · rw [singleton_prod] simp · funext a simp lemma join_sign_induction {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) (φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (hc : φsΛ.GradingCompliant) : (n : ℕ) → (hn : φsΛ.1.card = n) → (join φsΛ φsucΛ).sign = φsΛ.sign * φsucΛ.sign | 0, hn => by rw [@card_zero_iff_empty] at hn subst hn simp only [empty_join, sign_empty, one_mul] apply sign_congr simp | Nat.succ n, hn => by obtain ⟨i, j, hij, φsucΛ', rfl, h1, h2, h3⟩ := exists_join_singleton_of_card_ge_zero φsΛ (by simp [hn]) hc rw [join_assoc, join_sign_singleton hij h1, join_sign_singleton hij h1] have hn : φsucΛ'.1.card = n := by omega rw [join_sign_induction φsucΛ' (congr (by simp [join_uncontractedListGet]) φsucΛ) h2 n hn] rw [mul_assoc] simp only [mul_eq_mul_left_iff] left left apply sign_congr exact join_uncontractedListGet (singleton hij) φsucΛ' lemma join_sign {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) (φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (hc : φsΛ.GradingCompliant) : (join φsΛ φsucΛ).sign = φsΛ.sign * φsucΛ.sign := by exact join_sign_induction φsΛ φsucΛ hc (φsΛ).1.card rfl lemma join_sign_timeContract {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length) (φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) : (join φsΛ φsucΛ).sign • (join φsΛ φsucΛ).timeContract.1 = (φsΛ.sign • φsΛ.timeContract.1) * (φsucΛ.sign • φsucΛ.timeContract.1) := by rw [join_timeContract] by_cases h : φsΛ.GradingCompliant · rw [join_sign _ _ h] simp [smul_smul, mul_comm] · rw [timeContract_of_not_gradingCompliant _ _ h] simp end WickContraction