/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.AnomalyCancellation.SM.Basic import HepLean.AnomalyCancellation.SM.NoGrav.Basic import HepLean.AnomalyCancellation.SM.NoGrav.One.LinearParameterization import Mathlib.NumberTheory.FLT.Three /-! # Lemmas for 1 family SM Accs The main result of this file is the conclusion of this paper: [Lohitsiri and Tong][Lohitsiri:2019fuu] That every solution to the ACCs without gravity satisfies for free the gravitational anomaly. -/ universe v u namespace SM namespace SMNoGrav namespace One open SMCharges open SMACCs open BigOperators lemma E_zero_iff_Q_zero {S : (SMNoGrav 1).Sols} : Q S.val (0 : Fin 1) = 0 ↔ E S.val (0 : Fin 1) = 0 := by let S' := linearParameters.bijection.symm S.1.1 have hC := cubeSol S have hS' := congrArg (fun S => S.val) (linearParameters.bijection.right_inv S.1.1) change S'.asCharges = S.val at hS' rw [← hS'] at hC exact Iff.intro (fun hQ => S'.cubic_zero_Q'_zero hC hQ) (fun hE => S'.cubic_zero_E'_zero hC hE) lemma accGrav_Q_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) = 0) : accGrav S.val = 0 := by rw [accGrav] simp only [SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk] erw [hQ, E_zero_iff_Q_zero.mp hQ] have h1 := SU2Sol S.1.1 have h2 := SU3Sol S.1.1 simp only [accSU2, SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk, accSU3] at h1 h2 erw [hQ] at h1 h2 simp_all linear_combination 3 * h2 lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0) : accGrav S.val = 0 := by have hE := E_zero_iff_Q_zero.mpr.mt hQ let S' := linearParametersQENeqZero.bijection.symm ⟨S.1.1, And.intro hQ hE⟩ have hC := cubeSol S have FLTThree := fermatLastTheoremFor_iff_rat.mp fermatLastTheoremThree have hS' := congrArg (fun S => S.val.val) (linearParametersQENeqZero.bijection.right_inv ⟨S.1.1, And.intro hQ hE⟩) change _ = S.val at hS' rw [← hS'] at hC ⊢ exact S'.grav_of_cubic hC FLTThree /-- Any solution to the ACCs without gravity satisfies the gravitational ACC. -/ theorem accGravSatisfied {S : (SMNoGrav 1).Sols} : accGrav S.val = 0 := by by_cases hQ : Q S.val (0 : Fin 1)= 0 · exact accGrav_Q_zero hQ · exact accGrav_Q_neq_zero hQ end One end SMNoGrav end SM