/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.Metric import Mathlib.GroupTheory.SpecificGroups.KleinFour /-! # The Lorentz Group We define the Lorentz group. ## TODO - Show that the Lorentz is a Lie group. - Prove that the restricted Lorentz group is equivalent to the connected component of the identity. - Define the continuous maps from `ℝ³` to `restrictedLorentzGroup` defining boosts. ## References - http://home.ku.edu.tr/~amostafazadeh/phys517_518/phys517_2016f/Handouts/A_Jaffi_Lorentz_Group.pdf -/ noncomputable section namespace spaceTime open Manifold open Matrix open Complex open ComplexConjugate /-- We say a matrix `Λ` preserves `ηLin` if for all `x` and `y`, `ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y`. -/ def PreservesηLin (Λ : Matrix (Fin 4) (Fin 4) ℝ) : Prop := ∀ (x y : spaceTime), ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y namespace PreservesηLin variable (Λ : Matrix (Fin 4) (Fin 4) ℝ) lemma iff_on_right : PreservesηLin Λ ↔ ∀ (x y : spaceTime), ηLin x ((η * Λᵀ * η * Λ) *ᵥ y) = ηLin x y := by apply Iff.intro intro h intro x y have h1 := h x y rw [ηLin_mulVec_left, mulVec_mulVec] at h1 exact h1 intro h intro x y rw [ηLin_mulVec_left, mulVec_mulVec] exact h x y lemma iff_matrix : PreservesηLin Λ ↔ η * Λᵀ * η * Λ = 1 := by rw [iff_on_right, ηLin_matrix_eq_identity_iff (η * Λᵀ * η * Λ)] apply Iff.intro · simp_all [ηLin, implies_true, iff_true, one_mulVec] · simp_all only [ηLin, LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply, mulVec_mulVec, implies_true] lemma iff_matrix' : PreservesηLin Λ ↔ Λ * (η * Λᵀ * η) = 1 := by rw [iff_matrix] apply Iff.intro intro h exact mul_eq_one_comm.mp h intro h exact mul_eq_one_comm.mp h lemma iff_transpose : PreservesηLin Λ ↔ PreservesηLin Λᵀ := by apply Iff.intro intro h have h1 := congrArg transpose ((iff_matrix Λ).mp h) rw [transpose_mul, transpose_mul, transpose_mul, η_transpose, ← mul_assoc, transpose_one] at h1 rw [iff_matrix' Λ.transpose, ← h1] repeat rw [← mul_assoc] intro h have h1 := congrArg transpose ((iff_matrix Λ.transpose).mp h) rw [transpose_mul, transpose_mul, transpose_mul, η_transpose, ← mul_assoc, transpose_one, transpose_transpose] at h1 rw [iff_matrix', ← h1] repeat rw [← mul_assoc] /-- The lift of a matrix which preserves `ηLin` to an invertible matrix. -/ def liftGL {Λ : Matrix (Fin 4) (Fin 4) ℝ} (h : PreservesηLin Λ) : GL (Fin 4) ℝ := ⟨Λ, η * Λᵀ * η , (iff_matrix' Λ).mp h , (iff_matrix Λ).mp h⟩ end PreservesηLin /-- The Lorentz group as a subgroup of the general linear group over the reals. -/ def lorentzGroup : Subgroup (GL (Fin 4) ℝ) where carrier := {Λ | PreservesηLin Λ} mul_mem' {a b} := by intros ha hb x y simp only [Units.val_mul, mulVec_mulVec] rw [← mulVec_mulVec, ← mulVec_mulVec, ha, hb] one_mem' := by intros x y simp inv_mem' {a} := by intros ha x y simp only [coe_units_inv, ← ha ((a.1⁻¹) *ᵥ x) ((a.1⁻¹) *ᵥ y), mulVec_mulVec] have hx : (a.1 * (a.1)⁻¹) = 1 := by simp only [@Units.mul_eq_one_iff_inv_eq, coe_units_inv] simp [hx] /-- The Lorentz group is a topological group with the subset topology. -/ instance : TopologicalGroup lorentzGroup := Subgroup.instTopologicalGroupSubtypeMem lorentzGroup def PreservesηLin.liftLor {Λ : Matrix (Fin 4) (Fin 4) ℝ} (h : PreservesηLin Λ) : lorentzGroup := ⟨liftGL h, h⟩ namespace lorentzGroup lemma mem_iff (Λ : GL (Fin 4) ℝ): Λ ∈ lorentzGroup ↔ PreservesηLin Λ := by rfl /-- The transpose of an matrix in the Lorentz group is an element of the Lorentz group. -/ def transpose (Λ : lorentzGroup) : lorentzGroup := PreservesηLin.liftLor ((PreservesηLin.iff_transpose Λ.1).mp Λ.2) def kernalMap : C(GL (Fin 4) ℝ, Matrix (Fin 4) (Fin 4) ℝ) where toFun Λ := η * Λ.1ᵀ * η * Λ.1 continuous_toFun := by apply Continuous.mul _ Units.continuous_val apply Continuous.mul _ continuous_const exact Continuous.mul continuous_const (Continuous.matrix_transpose (Units.continuous_val)) lemma kernalMap_kernal_eq_lorentzGroup : lorentzGroup = kernalMap ⁻¹' {1} := by ext Λ erw [mem_iff Λ, PreservesηLin.iff_matrix] rfl /-- The Lorentz Group is a closed subset of `GL (Fin 4) ℝ`. -/ theorem isClosed_of_GL4 : IsClosed (lorentzGroup : Set (GL (Fin 4) ℝ)) := by rw [kernalMap_kernal_eq_lorentzGroup] exact continuous_iff_isClosed.mp kernalMap.2 {1} isClosed_singleton section Relations /-- The first column of a lorentz matrix. -/ @[simp] def fstCol (Λ : lorentzGroup) : spaceTime := fun i => Λ.1 i 0 lemma ηLin_fstCol (Λ : lorentzGroup) : ηLin (fstCol Λ) (fstCol Λ) = 1 := by rw [ηLin_expand] have h00 := congrFun (congrFun ((PreservesηLin.iff_matrix Λ.1).mp ((mem_iff Λ.1).mp Λ.2)) 0) 0 simp only [Fin.isValue, mul_apply, transpose_apply, Fin.sum_univ_four, ne_eq, zero_ne_one, not_false_eq_true, η_off_diagonal, zero_mul, add_zero, Fin.reduceEq, one_ne_zero, mul_zero, zero_add, one_apply_eq] at h00 simp only [η, Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val', cons_val_fin_one, vecCons_const, one_mul, mul_one, cons_val_one, head_cons, mul_neg, neg_mul, cons_val_two, Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons, cons_val_three, head_fin_const] at h00 rw [← h00] simp only [fstCol, Fin.isValue] ring lemma zero_component (x : { x : spaceTime // ηLin x x = 1}) : x.1 0 ^ 2 = 1 + ‖x.1.space‖ ^ 2 := by sorry /-- The space-like part of the first row of of a Lorentz matrix. -/ @[simp] def fstSpaceRow (Λ : lorentzGroup) : EuclideanSpace ℝ (Fin 3) := fun i => Λ.1 0 i.succ /-- The space-like part of the first column of of a Lorentz matrix. -/ @[simp] def fstSpaceCol (Λ : lorentzGroup) : EuclideanSpace ℝ (Fin 3) := fun i => Λ.1 i.succ 0 lemma fstSpaceRow_transpose (Λ : lorentzGroup) : fstSpaceRow (transpose Λ) = fstSpaceCol Λ := by rfl lemma fstSpaceCol_transpose (Λ : lorentzGroup) : fstSpaceCol (transpose Λ) = fstSpaceRow Λ := by rfl lemma fst_col_normalized (Λ : lorentzGroup) : (Λ.1 0 0) ^ 2 - ‖fstSpaceCol Λ‖ ^ 2 = 1 := by rw [← @real_inner_self_eq_norm_sq, @PiLp.inner_apply, Fin.sum_univ_three] simp rw [show Fin.succ 2 = 3 by rfl] have h00 := congrFun (congrFun ((PreservesηLin.iff_matrix Λ.1).mp ((mem_iff Λ.1).mp Λ.2)) 0) 0 simp only [Fin.isValue, mul_apply, transpose_apply, Fin.sum_univ_four, ne_eq, zero_ne_one, not_false_eq_true, η_off_diagonal, zero_mul, add_zero, Fin.reduceEq, one_ne_zero, mul_zero, zero_add, one_apply_eq] at h00 simp only [η, Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val', cons_val_fin_one, vecCons_const, one_mul, mul_one, cons_val_one, head_cons, mul_neg, neg_mul, cons_val_two, Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons, cons_val_three, head_fin_const] at h00 rw [← h00] ring lemma fst_row_normalized end Relations end lorentzGroup end spaceTime