/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.TensorSpecies.Contractions.ContrMap /-! # Tensor trees - Tensor trees provide an abstract way to represent tensor expressions. - Their nodes are either tensors or operations between tensors. - Every tensor tree has associated with an underlying tensor. - This is not a one-to-one correspondence. Lots tensor trees represent the same tensor. In the same way that lots of tensor expressions represent the same tensor. - Define a sub-tensor tree as a node of a tensor tree and all child nodes thereof. One can replace sub-tensor tree with another tensor tree which has the same underlying tensor without changing the underlying tensor of the parent tensor tree. These appear as the e.g. the lemmas `contr_tensor_eq` in what follows. -/ open IndexNotation open CategoryTheory open MonoidalCategory noncomputable section /-- A syntax tree for tensor expressions. -/ inductive TensorTree (S : TensorSpecies) : {n : ℕ} → (Fin n → S.C) → Type where /-- A general tensor node. -/ | tensorNode {n : ℕ} {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) : TensorTree S c /-- A node corresponding to the scalar multiple of a tensor by a element of the field. -/ | smul {n : ℕ} {c : Fin n → S.C} : S.k → TensorTree S c → TensorTree S c /-- A node corresponding to negation of a tensor. -/ | neg {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c /-- A node corresponding to the addition of two tensors. -/ | add {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c → TensorTree S c /-- A node corresponding to the action of a group element on a tensor. -/ | action {n : ℕ} {c : Fin n → S.C} : S.G → TensorTree S c → TensorTree S c /-- A node corresponding to the permutation of indices of a tensor. -/ | perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) : TensorTree S c1 /-- A node corresponding to the product of two tensors. -/ | prod {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (t : TensorTree S c) (t1 : TensorTree S c1) : TensorTree S (Sum.elim c c1 ∘ finSumFinEquiv.symm) /-- A node corresponding to the contraction of indices of a tensor. -/ | contr {n : ℕ} {c : Fin n.succ.succ → S.C} : (i : Fin n.succ.succ) → (j : Fin n.succ) → (h : c (i.succAbove j) = S.τ (c i)) → TensorTree S c → TensorTree S (c ∘ i.succAbove ∘ j.succAbove) /-- A node corresponding to the evaluation of an index of a tensor. -/ | eval {n : ℕ} {c : Fin n.succ → S.C} : (i : Fin n.succ) → (x : ℕ) → TensorTree S c → TensorTree S (c ∘ i.succAbove) namespace TensorTree variable {S : TensorSpecies} {n : ℕ} {c : Fin n → S.C} (T : TensorTree S c) open MonoidalCategory open TensorProduct /-! ## Composite nodes -/ /-- A node consisting of a single vector. -/ def vecNode {c : S.C} (v : S.FD.obj (Discrete.mk c)) : TensorTree S ![c] := perm (OverColor.mkIso (by ext x; fin_cases x; rfl)).hom (tensorNode ((OverColor.forgetLiftApp S.FD c).symm.hom.hom v)) /-- The node `vecNode` of a tensor tree, with all arguments explicit. -/ abbrev vecNodeE (S : TensorSpecies) (c1 : S.C) (v : (S.FD.obj (Discrete.mk c1)).V) : TensorTree S ![c1] := vecNode v /-- A node consisting of a two tensor. -/ def twoNode {c1 c2 : S.C} (t : (S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2)).V) : TensorTree S ![c1, c2] := (tensorNode ((OverColor.Discrete.pairIsoSep S.FD).hom.hom t)) /-- The node `twoNode` of a tensor tree, with all arguments explicit. -/ abbrev twoNodeE (S : TensorSpecies) (c1 c2 : S.C) (v : (S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2)).V) : TensorTree S ![c1, c2] := twoNode v /-- A node consisting of a three tensor. -/ def threeNode {c1 c2 c3 : S.C} (t : (S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2) ⊗ S.FD.obj (Discrete.mk c3)).V) : TensorTree S ![c1, c2, c3] := (tensorNode ((OverColor.Discrete.tripleIsoSep S.FD).hom.hom t)) /-- The node `threeNode` of a tensor tree, with all arguments explicit. -/ abbrev threeNodeE (S : TensorSpecies) (c1 c2 c3 : S.C) (v : (S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2) ⊗ S.FD.obj (Discrete.mk c3)).V) : TensorTree S ![c1, c2, c3] := threeNode v /-- A general constant node. -/ def constNode {n : ℕ} {c : Fin n → S.C} (T : 𝟙_ (Rep S.k S.G) ⟶ S.F.obj (OverColor.mk c)) : TensorTree S c := tensorNode (T.hom (1 : S.k)) /-- A constant vector. -/ def constVecNode {c : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c)) : TensorTree S ![c] := vecNode (v.hom (1 : S.k)) /-- A constant two tensor (e.g. metric and unit). -/ def constTwoNode {c1 c2 : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2)) : TensorTree S ![c1, c2] := twoNode (v.hom (1 : S.k)) /-- The node `constTwoNode` of a tensor tree, with all arguments explicit. -/ abbrev constTwoNodeE (S : TensorSpecies) (c1 c2 : S.C) (v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2)) : TensorTree S ![c1, c2] := constTwoNode v /-- A constant three tensor (e.g. Pauli matrices). -/ def constThreeNode {c1 c2 c3 : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2) ⊗ S.FD.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] := threeNode (v.hom (1 : S.k)) /-- The node `constThreeNode` of a tensor tree, with all arguments explicit. -/ abbrev constThreeNodeE (S : TensorSpecies) (c1 c2 c3 : S.C) (v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2) ⊗ S.FD.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] := constThreeNode v /-! ## Other operations. -/ /-- The number of nodes in a tensor tree. -/ def size {n : ℕ} {c : Fin n → S.C} : TensorTree S c → ℕ := fun | tensorNode _ => 1 | add t1 t2 => t1.size + t2.size + 1 | perm _ t => t.size + 1 | neg t => t.size + 1 | smul _ t => t.size + 1 | prod t1 t2 => t1.size + t2.size + 1 | contr _ _ _ t => t.size + 1 | eval _ _ t => t.size + 1 | action _ t => t.size + 1 noncomputable section /-- The underlying tensor a tensor tree corresponds to. -/ def tensor {n : ℕ} {c : Fin n → S.C} : TensorTree S c → S.F.obj (OverColor.mk c) := fun | tensorNode t => t | smul a t => a • t.tensor | neg t => - t.tensor | add t1 t2 => t1.tensor + t2.tensor | action g t => (S.F.obj (OverColor.mk _)).ρ g t.tensor | perm σ t => (S.F.map σ).hom t.tensor | prod t1 t2 => (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom ((Functor.LaxMonoidal.μ S.F _ _).hom (t1.tensor ⊗ₜ t2.tensor)) | contr i j h t => (S.contrMap _ i j h).hom t.tensor | eval i e t => (S.evalMap i (Fin.ofNat' _ e)) t.tensor /-- Takes a tensor tree based on `Fin 0`, into the field `S.k`. -/ def field {c : Fin 0 → S.C} (t : TensorTree S c) : S.k := S.castFin0ToField t.tensor /-! ## Tensor on different nodes. -/ @[simp] lemma tensorNode_tensor {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) : (tensorNode T).tensor = T := rfl @[simp] lemma constTwoNode_tensor {c1 c2 : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2)) : (constTwoNode v).tensor = (OverColor.Discrete.pairIsoSep S.FD).hom.hom (v.hom (1 : S.k)) := rfl @[simp] lemma constThreeNode_tensor {c1 c2 c3 : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FD.obj (Discrete.mk c1) ⊗ S.FD.obj (Discrete.mk c2) ⊗ S.FD.obj (Discrete.mk c3)) : (constThreeNode v).tensor = (OverColor.Discrete.tripleIsoSep S.FD).hom.hom (v.hom (1 : S.k)) := rfl lemma prod_tensor {c1 : Fin n → S.C} {c2 : Fin m → S.C} (t1 : TensorTree S c1) (t2 : TensorTree S c2) : (prod t1 t2).tensor = (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom ((Functor.LaxMonoidal.μ S.F _ _).hom (t1.tensor ⊗ₜ t2.tensor)) := rfl lemma add_tensor (t1 t2 : TensorTree S c) : (add t1 t2).tensor = t1.tensor + t2.tensor := rfl lemma perm_tensor (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) : (perm σ t).tensor = (S.F.map σ).hom t.tensor := rfl lemma contr_tensor {n : ℕ} {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = S.τ (c i)} (t : TensorTree S c) : (contr i j h t).tensor = (S.contrMap c i j h).hom t.tensor := rfl lemma neg_tensor (t : TensorTree S c) : (neg t).tensor = - t.tensor := rfl lemma eval_tensor {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : ℕ) (t : TensorTree S c) : (eval i e t).tensor = (S.evalMap i (Fin.ofNat' (S.repDim (c i)) e)) t.tensor := rfl lemma smul_tensor {c : Fin n → S.C} (a : S.k) (T : TensorTree S c) : (smul a T).tensor = a • T.tensor:= rfl lemma action_tensor {c : Fin n → S.C} (g : S.G) (T : TensorTree S c) : (action g T).tensor = (S.F.obj (OverColor.mk c)).ρ g T.tensor := rfl /-! ## Equality of tensors and rewrites. -/ lemma contr_tensor_eq {n : ℕ} {c : Fin n.succ.succ → S.C} {T1 T2 : TensorTree S c} (h : T1.tensor = T2.tensor) {i : Fin n.succ.succ} {j : Fin n.succ} {h' : c (i.succAbove j) = S.τ (c i)} : (contr i j h' T1).tensor = (contr i j h' T2).tensor := by simp only [Nat.succ_eq_add_one, contr_tensor] rw [h] lemma prod_tensor_eq_fst {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} {T1 T1' : TensorTree S c} { T2 : TensorTree S c1} (h : T1.tensor = T1'.tensor) : (prod T1 T2).tensor = (prod T1' T2).tensor := by simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj] rw [h] lemma prod_tensor_eq_snd {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} {T1 : TensorTree S c} {T2 T2' : TensorTree S c1} (h : T2.tensor = T2'.tensor) : (prod T1 T2).tensor = (prod T1 T2').tensor := by simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj] rw [h] lemma perm_tensor_eq {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} {σ : (OverColor.mk c) ⟶ (OverColor.mk c1)} {T1 T2 : TensorTree S c} (h : T1.tensor = T2.tensor) : (perm σ T1).tensor = (perm σ T2).tensor := by simp only [perm_tensor] rw [h] lemma add_tensor_eq_fst {T1 T1' T2 : TensorTree S c} (h : T1.tensor = T1'.tensor) : (add T1 T2).tensor = (add T1' T2).tensor := by simp only [add_tensor] rw [h] lemma add_tensor_eq_snd {T1 T2 T2' : TensorTree S c} (h : T2.tensor = T2'.tensor) : (add T1 T2).tensor = (add T1 T2').tensor := by simp only [add_tensor] rw [h] lemma add_tensor_eq {T1 T1' T2 T2' : TensorTree S c} (h1 : T1.tensor = T1'.tensor) (h2 : T2.tensor = T2'.tensor) : (add T1 T2).tensor = (add T1' T2').tensor := by simp only [add_tensor] rw [h1, h2] lemma neg_tensor_eq {T1 T2 : TensorTree S c} (h : T1.tensor = T2.tensor) : (neg T1).tensor = (neg T2).tensor := by simp only [neg_tensor] rw [h] lemma smul_tensor_eq {T1 T2 : TensorTree S c} {a : S.k} (h : T1.tensor = T2.tensor) : (smul a T1).tensor = (smul a T2).tensor := by simp only [smul_tensor] rw [h] lemma action_tensor_eq {T1 T2 : TensorTree S c} {g : S.G} (h : T1.tensor = T2.tensor) : (action g T1).tensor = (action g T2).tensor := by simp only [action_tensor] rw [h] lemma smul_mul_eq {T1 : TensorTree S c} {a b : S.k} (h : a = b) : (smul a T1).tensor = (smul b T1).tensor := by rw [h] lemma eq_tensorNode_of_eq_tensor {T1 : TensorTree S c} {t : S.F.obj (OverColor.mk c)} (h : T1.tensor = t) : T1.tensor = (tensorNode t).tensor := by simpa using h /-! ## The zero tensor tree -/ /-- The zero tensor tree. -/ def zeroTree {n : ℕ} {c : Fin n → S.C} : TensorTree S c := tensorNode 0 @[simp] lemma zeroTree_tensor {n : ℕ} {c : Fin n → S.C} : (zeroTree (c := c)).tensor = 0 := by rfl lemma zero_smul {T1 : TensorTree S c} : (smul 0 T1).tensor = zeroTree.tensor := by simp only [smul_tensor, _root_.zero_smul, zeroTree_tensor] lemma smul_zero {a : S.k} : (smul a (zeroTree (c := c))).tensor = zeroTree.tensor := by simp only [smul_tensor, zeroTree_tensor, _root_.smul_zero] lemma zero_add {T1 : TensorTree S c} : (add zeroTree T1).tensor = T1.tensor := by simp only [add_tensor, zeroTree_tensor, _root_.zero_add] lemma add_zero {T1 : TensorTree S c} : (add T1 zeroTree).tensor = T1.tensor := by simp only [add_tensor, zeroTree_tensor, _root_.add_zero] lemma perm_zero {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : (perm σ zeroTree).tensor = zeroTree.tensor := by simp only [perm_tensor, zeroTree_tensor, map_zero] lemma neg_zero : (neg (zeroTree (c := c))).tensor = zeroTree.tensor := by simp only [neg_tensor, zeroTree_tensor, _root_.neg_zero] lemma contr_zero {n : ℕ} {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = S.τ (c i)} : (contr i j h zeroTree).tensor = zeroTree.tensor := by simp only [contr_tensor, zeroTree_tensor, map_zero] lemma zero_prod {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (t : TensorTree S c1) : (prod (zeroTree (c := c)) t).tensor = zeroTree.tensor := by simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, zeroTree_tensor, zero_tmul, map_zero] lemma prod_zero {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (t : TensorTree S c) : (prod t (zeroTree (c := c1))).tensor = zeroTree.tensor := by simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, zeroTree_tensor, tmul_zero, map_zero] /-- A structure containing a pair of indices (i, j) to be contracted in a tensor. This is used in some proofs of node identities for tensor trees. -/ structure ContrPair {n : ℕ} (c : Fin n.succ.succ → S.C) where /-- The first index in the pair, appearing on the left in the contraction node `contr i j h _`. -/ i : Fin n.succ.succ /-- The second index in the pair, appearing on the right in the contraction node `contr i j h _`. -/ j : Fin n.succ /-- A proof that the two indices can be contracted. -/ h : c (i.succAbove j) = S.τ (c i) namespace ContrPair variable {n : ℕ} {c : Fin n.succ.succ → S.C} (q q' : ContrPair c) lemma ext (hi : q.i = q'.i) (hj : q.j = q'.j) : q = q' := by cases q cases q' subst hi subst hj rfl /-- The contraction map for a pair of indices. -/ def contrMap := S.contrMap c q.i q.j q.h end ContrPair end end TensorTree end