/- Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.PerturbationTheory.Algebras.FieldOpFreeAlgebra.SuperCommute import Mathlib.Algebra.RingQuot import Mathlib.RingTheory.TwoSidedIdeal.Operations /-! # Field operator algebra -/ namespace FieldSpecification open FieldOpFreeAlgebra open HepLean.List open FieldStatistic variable (𝓕 : FieldSpecification) /-- The set contains the super-commutors equal to zero in the operator algebra. This contains e.g. the super-commutor of two creation operators. -/ def fieldOpIdealSet : Set (FieldOpFreeAlgebra 𝓕) := { x | (∃ (φ1 φ2 φ3 : 𝓕.CrAnStates), x = [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca) ∨ (∃ (φc φc' : 𝓕.CrAnStates) (_ : 𝓕 |>ᶜ φc = .create) (_ : 𝓕 |>ᶜ φc' = .create), x = [ofCrAnState φc, ofCrAnState φc']ₛca) ∨ (∃ (φa φa' : 𝓕.CrAnStates) (_ : 𝓕 |>ᶜ φa = .annihilate) (_ : 𝓕 |>ᶜ φa' = .annihilate), x = [ofCrAnState φa, ofCrAnState φa']ₛca) ∨ (∃ (φ φ' : 𝓕.CrAnStates) (_ : ¬ (𝓕 |>ₛ φ) = (𝓕 |>ₛ φ')), x = [ofCrAnState φ, ofCrAnState φ']ₛca)} /-- The algebra spanned by cr and an parts of fields, with appropriate super-commutors set to zero. -/ abbrev FieldOpAlgebra : Type := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.Quotient namespace FieldOpAlgebra variable {𝓕 : FieldSpecification} /-- The instance of a setoid on `FieldOpFreeAlgebra` from the ideal `TwoSidedIdeal`. -/ instance : Setoid (FieldOpFreeAlgebra 𝓕) := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.toSetoid lemma equiv_iff_sub_mem_ideal (x y : FieldOpFreeAlgebra 𝓕) : x ≈ y ↔ x - y ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by rw [← TwoSidedIdeal.rel_iff] rfl /-- The projection of `FieldOpFreeAlgebra` down to `FieldOpAlgebra` as an algebra map. -/ def ι : FieldOpFreeAlgebra 𝓕 →ₐ[ℂ] FieldOpAlgebra 𝓕 where toFun := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.mk' map_one' := by rfl map_mul' x y := by rfl map_zero' := by rfl map_add' x y := by rfl commutes' x := by rfl lemma ι_surjective : Function.Surjective (@ι 𝓕) := by intro x obtain ⟨x⟩ := x use x rfl lemma ι_apply (x : FieldOpFreeAlgebra 𝓕) : ι x = Quotient.mk _ x := rfl lemma ι_of_mem_fieldOpIdealSet (x : FieldOpFreeAlgebra 𝓕) (hx : x ∈ 𝓕.fieldOpIdealSet) : ι x = 0 := by rw [ι_apply] change ⟦x⟧ = ⟦0⟧ simp only [ringConGen, Quotient.eq] refine RingConGen.Rel.of x 0 ?_ simpa using hx lemma ι_superCommuteF_of_create_create (φc φc' : 𝓕.CrAnStates) (hφc : 𝓕 |>ᶜ φc = .create) (hφc' : 𝓕 |>ᶜ φc' = .create) : ι [ofCrAnState φc, ofCrAnState φc']ₛca = 0 := by apply ι_of_mem_fieldOpIdealSet simp only [fieldOpIdealSet, exists_and_left, Set.mem_setOf_eq] simp only [exists_prop] right left use φc, φc', hφc, hφc' lemma ι_superCommuteF_of_annihilate_annihilate (φa φa' : 𝓕.CrAnStates) (hφa : 𝓕 |>ᶜ φa = .annihilate) (hφa' : 𝓕 |>ᶜ φa' = .annihilate) : ι [ofCrAnState φa, ofCrAnState φa']ₛca = 0 := by apply ι_of_mem_fieldOpIdealSet simp only [fieldOpIdealSet, exists_and_left, Set.mem_setOf_eq] simp only [exists_prop] right right left use φa, φa', hφa, hφa' lemma ι_superCommuteF_of_diff_statistic {φ ψ : 𝓕.CrAnStates} (h : (𝓕 |>ₛ φ) ≠ (𝓕 |>ₛ ψ)) : ι [ofCrAnState φ, ofCrAnState ψ]ₛca = 0 := by apply ι_of_mem_fieldOpIdealSet simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq] right right right use φ, ψ lemma ι_superCommuteF_zero_of_fermionic (φ ψ : 𝓕.CrAnStates) (h : [ofCrAnState φ, ofCrAnState ψ]ₛca ∈ statisticSubmodule fermionic) : ι [ofCrAnState φ, ofCrAnState ψ]ₛca = 0 := by rw [← ofCrAnList_singleton, ← ofCrAnList_singleton] at h ⊢ rcases statistic_neq_of_superCommuteF_fermionic h with h | h · simp only [ofCrAnList_singleton] apply ι_superCommuteF_of_diff_statistic simpa using h · simp [h] lemma ι_superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_zero (φ ψ : 𝓕.CrAnStates) : [ofCrAnState φ, ofCrAnState ψ]ₛca ∈ statisticSubmodule bosonic ∨ ι [ofCrAnState φ, ofCrAnState ψ]ₛca = 0 := by rcases superCommuteF_ofCrAnList_ofCrAnList_bosonic_or_fermionic [φ] [ψ] with h | h · simp_all [ofCrAnList_singleton] · simp_all only [ofCrAnList_singleton] right exact ι_superCommuteF_zero_of_fermionic _ _ h /-! ## Super-commutes are in the center -/ @[simp] lemma ι_superCommuteF_ofCrAnState_superCommuteF_ofCrAnState_ofCrAnState (φ1 φ2 φ3 : 𝓕.CrAnStates) : ι [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca = 0 := by apply ι_of_mem_fieldOpIdealSet simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq] left use φ1, φ2, φ3 lemma ι_superCommuteF_superCommuteF_ofCrAnState_ofCrAnState_ofCrAnState (φ1 φ2 φ3 : 𝓕.CrAnStates) : ι [[ofCrAnState φ1, ofCrAnState φ2]ₛca, ofCrAnState φ3]ₛca = 0 := by rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_singleton] rcases superCommuteF_ofCrAnList_ofCrAnList_bosonic_or_fermionic [φ1] [φ2] with h | h · rw [bonsonic_superCommuteF_symm h] simp [ofCrAnList_singleton] · rcases ofCrAnList_bosonic_or_fermionic [φ3] with h' | h' · rw [superCommuteF_bonsonic_symm h'] simp [ofCrAnList_singleton] · rw [superCommuteF_fermionic_fermionic_symm h h'] simp [ofCrAnList_singleton] lemma ι_superCommuteF_superCommuteF_ofCrAnState_ofCrAnState_ofCrAnList (φ1 φ2 : 𝓕.CrAnStates) (φs : List 𝓕.CrAnStates) : ι [[ofCrAnState φ1, ofCrAnState φ2]ₛca, ofCrAnList φs]ₛca = 0 := by rw [← ofCrAnList_singleton, ← ofCrAnList_singleton] rcases superCommuteF_ofCrAnList_ofCrAnList_bosonic_or_fermionic [φ1] [φ2] with h | h · rw [superCommuteF_bosonic_ofCrAnList_eq_sum _ _ h] simp [ofCrAnList_singleton, ι_superCommuteF_superCommuteF_ofCrAnState_ofCrAnState_ofCrAnState] · rw [superCommuteF_fermionic_ofCrAnList_eq_sum _ _ h] simp [ofCrAnList_singleton, ι_superCommuteF_superCommuteF_ofCrAnState_ofCrAnState_ofCrAnState] @[simp] lemma ι_superCommuteF_superCommuteF_ofCrAnState_ofCrAnState_fieldOpFreeAlgebra (φ1 φ2 : 𝓕.CrAnStates) (a : 𝓕.FieldOpFreeAlgebra) : ι [[ofCrAnState φ1, ofCrAnState φ2]ₛca, a]ₛca = 0 := by change (ι.toLinearMap ∘ₗ superCommuteF [ofCrAnState φ1, ofCrAnState φ2]ₛca) a = _ have h1 : (ι.toLinearMap ∘ₗ superCommuteF [ofCrAnState φ1, ofCrAnState φ2]ₛca) = 0 := by apply (ofCrAnListBasis.ext fun l ↦ ?_) simp [ι_superCommuteF_superCommuteF_ofCrAnState_ofCrAnState_ofCrAnList] rw [h1] simp lemma ι_commute_fieldOpFreeAlgebra_superCommuteF_ofCrAnState_ofCrAnState (φ1 φ2 : 𝓕.CrAnStates) (a : 𝓕.FieldOpFreeAlgebra) : ι a * ι [ofCrAnState φ1, ofCrAnState φ2]ₛca - ι [ofCrAnState φ1, ofCrAnState φ2]ₛca * ι a = 0 := by rcases ι_superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_zero φ1 φ2 with h | h swap · simp [h] trans - ι [[ofCrAnState φ1, ofCrAnState φ2]ₛca, a]ₛca · rw [bosonic_superCommuteF h] simp · simp lemma ι_superCommuteF_ofCrAnState_ofCrAnState_mem_center (φ ψ : 𝓕.CrAnStates) : ι [ofCrAnState φ, ofCrAnState ψ]ₛca ∈ Subalgebra.center ℂ 𝓕.FieldOpAlgebra := by rw [Subalgebra.mem_center_iff] intro a obtain ⟨a, rfl⟩ := ι_surjective a have h0 := ι_commute_fieldOpFreeAlgebra_superCommuteF_ofCrAnState_ofCrAnState φ ψ a trans ι ((superCommuteF (ofCrAnState φ)) (ofCrAnState ψ)) * ι a + 0 swap simp only [add_zero] rw [← h0] abel /-! ## The kernal of ι -/ lemma ι_eq_zero_iff_mem_ideal (x : FieldOpFreeAlgebra 𝓕) : ι x = 0 ↔ x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by rw [ι_apply] change ⟦x⟧ = ⟦0⟧ ↔ _ simp only [ringConGen, Quotient.eq] rw [TwoSidedIdeal.mem_iff] simp only rfl lemma bosonicProj_mem_fieldOpIdealSet_or_zero (x : FieldOpFreeAlgebra 𝓕) (hx : x ∈ 𝓕.fieldOpIdealSet) : x.bosonicProj.1 ∈ 𝓕.fieldOpIdealSet ∨ x.bosonicProj = 0 := by have hx' := hx simp only [fieldOpIdealSet, exists_prop, Set.mem_setOf_eq] at hx rcases hx with ⟨φ1, φ2, φ3, rfl⟩ | ⟨φc, φc', hφc, hφc', rfl⟩ | ⟨φa, φa', hφa, hφa', rfl⟩ | ⟨φ, φ', hdiff, rfl⟩ · rcases superCommuteF_superCommuteF_ofCrAnState_bosonic_or_fermionic φ1 φ2 φ3 with h | h · left rw [bosonicProj_of_mem_bosonic _ h] simpa using hx' · right rw [bosonicProj_of_mem_fermionic _ h] · rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φc φc' with h | h · left rw [bosonicProj_of_mem_bosonic _ h] simpa using hx' · right rw [bosonicProj_of_mem_fermionic _ h] · rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φa φa' with h | h · left rw [bosonicProj_of_mem_bosonic _ h] simpa using hx' · right rw [bosonicProj_of_mem_fermionic _ h] · rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φ φ' with h | h · left rw [bosonicProj_of_mem_bosonic _ h] simpa using hx' · right rw [bosonicProj_of_mem_fermionic _ h] lemma fermionicProj_mem_fieldOpIdealSet_or_zero (x : FieldOpFreeAlgebra 𝓕) (hx : x ∈ 𝓕.fieldOpIdealSet) : x.fermionicProj.1 ∈ 𝓕.fieldOpIdealSet ∨ x.fermionicProj = 0 := by have hx' := hx simp only [fieldOpIdealSet, exists_prop, Set.mem_setOf_eq] at hx rcases hx with ⟨φ1, φ2, φ3, rfl⟩ | ⟨φc, φc', hφc, hφc', rfl⟩ | ⟨φa, φa', hφa, hφa', rfl⟩ | ⟨φ, φ', hdiff, rfl⟩ · rcases superCommuteF_superCommuteF_ofCrAnState_bosonic_or_fermionic φ1 φ2 φ3 with h | h · right rw [fermionicProj_of_mem_bosonic _ h] · left rw [fermionicProj_of_mem_fermionic _ h] simpa using hx' · rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φc φc' with h | h · right rw [fermionicProj_of_mem_bosonic _ h] · left rw [fermionicProj_of_mem_fermionic _ h] simpa using hx' · rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φa φa' with h | h · right rw [fermionicProj_of_mem_bosonic _ h] · left rw [fermionicProj_of_mem_fermionic _ h] simpa using hx' · rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φ φ' with h | h · right rw [fermionicProj_of_mem_bosonic _ h] · left rw [fermionicProj_of_mem_fermionic _ h] simpa using hx' lemma bosonicProj_mem_ideal (x : FieldOpFreeAlgebra 𝓕) (hx : x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : x.bosonicProj.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at hx let p {k : Set 𝓕.FieldOpFreeAlgebra} (a : FieldOpFreeAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) : Prop := a.bosonicProj.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet change p x hx apply AddSubgroup.closure_induction · intro x hx simp only [p] obtain ⟨a, ha, b, hb, rfl⟩ := Set.mem_mul.mp hx obtain ⟨d, hd, y, hy, rfl⟩ := Set.mem_mul.mp ha rw [bosonicProj_mul, bosonicProj_mul, fermionicProj_mul] simp only [add_mul] rcases fermionicProj_mem_fieldOpIdealSet_or_zero y hy with hfy | hfy <;> rcases bosonicProj_mem_fieldOpIdealSet_or_zero y hy with hby | hby · apply TwoSidedIdeal.add_mem apply TwoSidedIdeal.add_mem · /- boson, boson, boson mem-/ rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure apply Set.mem_mul.mpr use ↑(bosonicProj d) * ↑(bosonicProj y) apply And.intro · apply Set.mem_mul.mpr use bosonicProj d simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and] use (bosonicProj y).1 simp [hby] · use ↑(bosonicProj b) simp · /- fermion, fermion, boson mem-/ rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure apply Set.mem_mul.mpr use ↑(fermionicProj d) * ↑(fermionicProj y) apply And.intro · apply Set.mem_mul.mpr use fermionicProj d simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and] use (fermionicProj y).1 simp [hby, hfy] · use ↑(bosonicProj b) simp apply TwoSidedIdeal.add_mem · /- boson, fermion, fermion mem-/ rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure apply Set.mem_mul.mpr use ↑(bosonicProj d) * ↑(fermionicProj y) apply And.intro · apply Set.mem_mul.mpr use bosonicProj d simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and] use (fermionicProj y).1 simp [hby, hfy] · use ↑(fermionicProj b) simp · /- fermion, boson, fermion mem-/ rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure apply Set.mem_mul.mpr use ↑(fermionicProj d) * ↑(bosonicProj y) apply And.intro · apply Set.mem_mul.mpr use fermionicProj d simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and] use (bosonicProj y).1 simp [hby, hfy] · use ↑(fermionicProj b) simp · simp only [hby, ZeroMemClass.coe_zero, mul_zero, zero_mul, zero_add, add_zero] apply TwoSidedIdeal.add_mem · /- fermion, fermion, boson mem-/ rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure apply Set.mem_mul.mpr use ↑(fermionicProj d) * ↑(fermionicProj y) apply And.intro · apply Set.mem_mul.mpr use fermionicProj d simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and] use (fermionicProj y).1 simp [hby, hfy] · use ↑(bosonicProj b) simp · /- boson, fermion, fermion mem-/ rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure apply Set.mem_mul.mpr use ↑(bosonicProj d) * ↑(fermionicProj y) apply And.intro · apply Set.mem_mul.mpr use bosonicProj d simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and] use (fermionicProj y).1 simp [hby, hfy] · use ↑(fermionicProj b) simp · simp only [hfy, ZeroMemClass.coe_zero, mul_zero, zero_mul, add_zero, zero_add] apply TwoSidedIdeal.add_mem · /- boson, boson, boson mem-/ rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure apply Set.mem_mul.mpr use ↑(bosonicProj d) * ↑(bosonicProj y) apply And.intro · apply Set.mem_mul.mpr use bosonicProj d simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and] use (bosonicProj y).1 simp [hby] · use ↑(bosonicProj b) simp · /- fermion, boson, fermion mem-/ rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure apply Set.mem_mul.mpr use ↑(fermionicProj d) * ↑(bosonicProj y) apply And.intro · apply Set.mem_mul.mpr use fermionicProj d simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and] use (bosonicProj y).1 simp [hby, hfy] · use ↑(fermionicProj b) simp · simp [hfy, hby] · simp [p] · intro x y hx hy hpx hpy simp_all only [map_add, Submodule.coe_add, p] apply TwoSidedIdeal.add_mem · exact hpx · exact hpy · intro x hx simp [p] lemma fermionicProj_mem_ideal (x : FieldOpFreeAlgebra 𝓕) (hx : x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : x.fermionicProj.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by have hb := bosonicProj_mem_ideal x hx rw [← ι_eq_zero_iff_mem_ideal] at hx hb ⊢ rw [← bosonicProj_add_fermionicProj x] at hx simp only [map_add] at hx simp_all lemma ι_eq_zero_iff_ι_bosonicProj_fermonicProj_zero (x : FieldOpFreeAlgebra 𝓕) : ι x = 0 ↔ ι x.bosonicProj.1 = 0 ∧ ι x.fermionicProj.1 = 0 := by apply Iff.intro · intro h rw [ι_eq_zero_iff_mem_ideal] at h ⊢ rw [ι_eq_zero_iff_mem_ideal] apply And.intro · exact bosonicProj_mem_ideal x h · exact fermionicProj_mem_ideal x h · intro h rw [← bosonicProj_add_fermionicProj x] simp_all /-! ## Constructors -/ /-- An element of `FieldOpAlgebra` from a `States`. -/ def ofFieldOp (φ : 𝓕.States) : 𝓕.FieldOpAlgebra := ι (ofFieldOpF φ) lemma ofFieldOp_eq_ι_ofFieldOpF (φ : 𝓕.States) : ofFieldOp φ = ι (ofFieldOpF φ) := rfl /-- An element of `FieldOpAlgebra` from a list of `States`. -/ def ofFieldOpList (φs : List 𝓕.States) : 𝓕.FieldOpAlgebra := ι (ofFieldOpListF φs) lemma ofFieldOpList_eq_ι_ofFieldOpListF (φs : List 𝓕.States) : ofFieldOpList φs = ι (ofFieldOpListF φs) := rfl lemma ofFieldOpList_append (φs ψs : List 𝓕.States) : ofFieldOpList (φs ++ ψs) = ofFieldOpList φs * ofFieldOpList ψs := by simp only [ofFieldOpList] rw [ofFieldOpListF_append] simp lemma ofFieldOpList_cons (φ : 𝓕.States) (φs : List 𝓕.States) : ofFieldOpList (φ :: φs) = ofFieldOp φ * ofFieldOpList φs := by simp only [ofFieldOpList] rw [ofFieldOpListF_cons] simp only [map_mul] rfl lemma ofFieldOpList_singleton (φ : 𝓕.States) : ofFieldOpList [φ] = ofFieldOp φ := by simp only [ofFieldOpList, ofFieldOp, ofFieldOpListF_singleton] /-- An element of `FieldOpAlgebra` from a `CrAnStates`. -/ def ofCrAnFieldOp (φ : 𝓕.CrAnStates) : 𝓕.FieldOpAlgebra := ι (ofCrAnState φ) lemma ofCrAnFieldOp_eq_ι_ofCrAnState (φ : 𝓕.CrAnStates) : ofCrAnFieldOp φ = ι (ofCrAnState φ) := rfl lemma ofFieldOp_eq_sum (φ : 𝓕.States) : ofFieldOp φ = (∑ i : 𝓕.statesToCrAnType φ, ofCrAnFieldOp ⟨φ, i⟩) := by rw [ofFieldOp, ofFieldOpF] simp only [map_sum] rfl /-- An element of `FieldOpAlgebra` from a list of `CrAnStates`. -/ def ofCrAnFieldOpList (φs : List 𝓕.CrAnStates) : 𝓕.FieldOpAlgebra := ι (ofCrAnList φs) lemma ofCrAnFieldOpList_eq_ι_ofCrAnList (φs : List 𝓕.CrAnStates) : ofCrAnFieldOpList φs = ι (ofCrAnList φs) := rfl lemma ofCrAnFieldOpList_append (φs ψs : List 𝓕.CrAnStates) : ofCrAnFieldOpList (φs ++ ψs) = ofCrAnFieldOpList φs * ofCrAnFieldOpList ψs := by simp only [ofCrAnFieldOpList] rw [ofCrAnList_append] simp lemma ofCrAnFieldOpList_singleton (φ : 𝓕.CrAnStates) : ofCrAnFieldOpList [φ] = ofCrAnFieldOp φ := by simp only [ofCrAnFieldOpList, ofCrAnFieldOp, ofCrAnList_singleton] lemma ofFieldOpList_eq_sum (φs : List 𝓕.States) : ofFieldOpList φs = ∑ s : CrAnSection φs, ofCrAnFieldOpList s.1 := by rw [ofFieldOpList, ofFieldOpListF_sum] simp only [map_sum] rfl /-- The annihilation part of a state. -/ def anPart (φ : 𝓕.States) : 𝓕.FieldOpAlgebra := ι (anPartF φ) lemma anPart_eq_ι_anPartF (φ : 𝓕.States) : anPart φ = ι (anPartF φ) := rfl @[simp] lemma anPart_negAsymp (φ : 𝓕.IncomingAsymptotic) : anPart (States.inAsymp φ) = 0 := by simp [anPart, anPartF] @[simp] lemma anPart_position (φ : 𝓕.PositionStates) : anPart (States.position φ) = ofCrAnFieldOp ⟨States.position φ, CreateAnnihilate.annihilate⟩ := by simp [anPart, ofCrAnFieldOp] @[simp] lemma anPart_posAsymp (φ : 𝓕.OutgoingAsymptotic) : anPart (States.outAsymp φ) = ofCrAnFieldOp ⟨States.outAsymp φ, ()⟩ := by simp [anPart, ofCrAnFieldOp] /-- The creation part of a state. -/ def crPart (φ : 𝓕.States) : 𝓕.FieldOpAlgebra := ι (crPartF φ) lemma crPart_eq_ι_crPartF (φ : 𝓕.States) : crPart φ = ι (crPartF φ) := rfl @[simp] lemma crPart_negAsymp (φ : 𝓕.IncomingAsymptotic) : crPart (States.inAsymp φ) = ofCrAnFieldOp ⟨States.inAsymp φ, ()⟩ := by simp [crPart, ofCrAnFieldOp] @[simp] lemma crPart_position (φ : 𝓕.PositionStates) : crPart (States.position φ) = ofCrAnFieldOp ⟨States.position φ, CreateAnnihilate.create⟩ := by simp [crPart, ofCrAnFieldOp] @[simp] lemma crPart_posAsymp (φ : 𝓕.OutgoingAsymptotic) : crPart (States.outAsymp φ) = 0 := by simp [crPart] lemma ofFieldOp_eq_crPart_add_anPart (φ : 𝓕.States) : ofFieldOp φ = crPart φ + anPart φ := by rw [ofFieldOp, crPart, anPart, ofFieldOpF_eq_crPartF_add_anPartF] simp only [map_add] end FieldOpAlgebra end FieldSpecification