/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import Mathlib.LinearAlgebra.PiTensorProduct import Mathlib.Tactic.Polyrith import Mathlib.Tactic.Linarith import HepLean.Mathematics.Fin /-! # List lemmas -/ namespace HepLean.List open Fin open HepLean variable {n : Nat} /-- The equivalence between `Fin (a :: l).length` and `Fin (List.orderedInsert r a l).length` mapping `0` in the former to the location of `a` in the latter. -/ def insertEquiv {α : Type} (r : α → α → Prop) [DecidableRel r] (a : α) : (l : List α) → Fin (a :: l).length ≃ Fin (List.orderedInsert r a l).length | [] => Equiv.refl _ | b :: l => by if r a b then exact (Fin.castOrderIso (List.orderedInsert_length r (b :: l) a).symm).toEquiv else let e := insertEquiv (r := r) a l let e2 : Fin (a :: b :: l).length ≃ Fin (b :: a :: l).length := Equiv.swap ⟨0, Nat.zero_lt_succ (b :: l).length⟩ ⟨1, Nat.one_lt_succ_succ l.length⟩ let e3 : Fin (b :: a :: l).length ≃ Fin (b :: List.orderedInsert r a l).length := Fin.equivCons e let e4 : Fin (b :: List.orderedInsert r a l).length ≃ Fin (List.orderedInsert r a (b :: l)).length := (Fin.castOrderIso (by rw [List.orderedInsert_length] simpa using List.orderedInsert_length r l a)).toEquiv exact e2.trans (e3.trans e4) lemma insertEquiv_congr {α : Type} {r : α → α → Prop} [DecidableRel r] (a : α) (l l' : List α) (h : l = l') : insertEquiv r a l = (Fin.castOrderIso (by simp [h])).toEquiv.trans ((insertEquiv r a l').trans (Fin.castOrderIso (by simp [h])).toEquiv) := by subst h rfl lemma insertEquiv_cons_pos {α : Type} {r : α → α → Prop} [DecidableRel r] (a b : α) (hab : r a b) (l : List α) : insertEquiv r a (b :: l) = (Fin.castOrderIso (List.orderedInsert_length r (b :: l) a).symm).toEquiv := by simp [insertEquiv, hab] lemma insertEquiv_cons_neg {α : Type} {r : α → α → Prop} [DecidableRel r] (a b : α) (hab : ¬ r a b) (l : List α) : insertEquiv r a (b :: l) = let e := insertEquiv r a l let e2 : Fin (a :: b :: l).length ≃ Fin (b :: a :: l).length := Equiv.swap ⟨0, Nat.zero_lt_succ (b :: l).length⟩ ⟨1, Nat.one_lt_succ_succ l.length⟩ let e3 : Fin (b :: a :: l).length ≃ Fin (b :: List.orderedInsert r a l).length := Fin.equivCons e let e4 : Fin (b :: List.orderedInsert r a l).length ≃ Fin (List.orderedInsert r a (b :: l)).length := (Fin.castOrderIso (by rw [List.orderedInsert_length] simpa using List.orderedInsert_length r l a)).toEquiv e2.trans (e3.trans e4) := by simp [insertEquiv, hab] lemma insertEquiv_get {α : Type} {r : α → α → Prop} [DecidableRel r] (a : α) : (l : List α) → (a :: l).get ∘ (insertEquiv r a l).symm = (List.orderedInsert r a l).get | [] => by simp [insertEquiv] | b :: l => by by_cases hr : r a b · rw [insertEquiv_cons_pos a b hr l] simp_all only [List.orderedInsert.eq_2, List.length_cons, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, RelIso.coe_fn_toEquiv] ext x : 1 simp_all only [Function.comp_apply, Fin.castOrderIso_apply, List.get_eq_getElem, List.length_cons, Fin.coe_cast, ↓reduceIte] · rw [insertEquiv_cons_neg a b hr l] trans (b :: List.orderedInsert r a l).get ∘ Fin.cast (by rw [List.orderedInsert_length] simp [List.orderedInsert_length]) · simp only [List.orderedInsert.eq_2, List.length_cons, Fin.zero_eta, Fin.mk_one] ext x match x with | ⟨0, h⟩ => rfl | ⟨Nat.succ x, h⟩ => simp only [Nat.succ_eq_add_one, Function.comp_apply, Equiv.symm_trans_apply, Equiv.symm_swap, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.cast_mk, equivCons_symm_succ, List.get_eq_getElem, List.length_cons, List.getElem_cons_succ] have hswap (n : Fin (b :: a :: l).length) : (a :: b :: l).get (Equiv.swap ⟨0, by simp⟩ ⟨1, by simp⟩ n) = (b :: a :: l).get n := by match n with | ⟨0, h⟩ => rfl | ⟨1, h⟩ => rfl | ⟨Nat.succ (Nat.succ x), h⟩ => rfl trans (a :: b :: l).get (Equiv.swap ⟨0, by simp⟩ ⟨1, by simp⟩ ((insertEquiv r a l).symm ⟨x, by simpa [List.orderedInsert_length, hr] using h⟩).succ) · simp · rw [hswap] simp only [List.length_cons, List.get_eq_getElem, Fin.val_succ, List.getElem_cons_succ] change _ = (List.orderedInsert r a l).get _ rw [← insertEquiv_get (r := r) a l] simp · simp_all only [List.orderedInsert.eq_2, List.length_cons] ext x : 1 simp_all only [Function.comp_apply, List.get_eq_getElem, List.length_cons, Fin.coe_cast, ↓reduceIte] /-- The equivalence between `Fin l.length ≃ Fin (List.insertionSort r l).length` induced by the sorting algorithm. -/ def insertionSortEquiv {α : Type} (r : α → α → Prop) [DecidableRel r] : (l : List α) → Fin l.length ≃ Fin (List.insertionSort r l).length | [] => Equiv.refl _ | a :: l => (Fin.equivCons (insertionSortEquiv r l)).trans (insertEquiv r a (List.insertionSort r l)) lemma insertionSortEquiv_get {α : Type} {r : α → α → Prop} [DecidableRel r] : (l : List α) → l.get ∘ (insertionSortEquiv r l).symm = (List.insertionSort r l).get | [] => by simp [insertionSortEquiv] | a :: l => by rw [insertionSortEquiv] change ((a :: l).get ∘ ((Fin.equivCons (insertionSortEquiv r l))).symm) ∘ (insertEquiv r a (List.insertionSort r l)).symm = _ have hl : (a :: l).get ∘ ((Fin.equivCons (insertionSortEquiv r l))).symm = (a :: List.insertionSort r l).get := by ext x match x with | ⟨0, h⟩ => rfl | ⟨Nat.succ x, h⟩ => change _ = (List.insertionSort r l).get _ rw [← insertionSortEquiv_get (r := r) l] rfl rw [hl] rw [insertEquiv_get (r := r) a (List.insertionSort r l)] rfl lemma insertionSort_eq_ofFn {α : Type} {r : α → α → Prop} [DecidableRel r] (l : List α) : List.insertionSort r l = List.ofFn (l.get ∘ (insertionSortEquiv r l).symm) := by rw [insertionSortEquiv_get (r := r)] exact Eq.symm (List.ofFn_get (List.insertionSort r l)) end HepLean.List