/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.MinkowskiMetric import HepLean.SpaceTime.PauliMatrices.SelfAdjoint import Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup import Mathlib.Tactic.Polyrith /-! # Lorentz vector as a self-adjoint matrix There is a linear equivalence between the vector space of space-time points and the vector space of 2×2-complex self-adjoint matrices. In this file we define this linear equivalence in `toSelfAdjointMatrix`. -/ /-! TODO: Generalize rep of Lorentz vector as a self-adjoint matrix to arbitrary dimension. -/ namespace SpaceTime open Matrix open MatrixGroups open Complex noncomputable section /-- The linear equivalence between the vector-space `spaceTime` and self-adjoint `2×2`-complex matrices. -/ def toSelfAdjointMatrix : LorentzVector 3 ≃ₗ[ℝ] selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) := (Finsupp.linearEquivFunOnFinite ℝ ℝ (Fin 1 ⊕ Fin 3)).symm ≪≫ₗ PauliMatrix.σSAL.repr.symm lemma toSelfAdjointMatrix_apply (x : LorentzVector 3) : toSelfAdjointMatrix x = x (Sum.inl 0) • ⟨PauliMatrix.σ0, PauliMatrix.σ0_selfAdjoint⟩ - x (Sum.inr 0) • ⟨PauliMatrix.σ1, PauliMatrix.σ1_selfAdjoint⟩ - x (Sum.inr 1) • ⟨PauliMatrix.σ2, PauliMatrix.σ2_selfAdjoint⟩ - x (Sum.inr 2) • ⟨PauliMatrix.σ3, PauliMatrix.σ3_selfAdjoint⟩ := by simp only [toSelfAdjointMatrix, PauliMatrix.σSAL, LinearEquiv.trans_apply, Basis.repr_symm_apply, Basis.coe_mk, Fin.isValue] rw [Finsupp.linearCombination_apply_of_mem_supported ℝ (s := Finset.univ)] · change (∑ i : Fin 1 ⊕ Fin 3, x i • PauliMatrix.σSAL' i) = _ simp only [PauliMatrix.σSAL', Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton, Fin.sum_univ_three] apply Subtype.ext simp only [Fin.isValue, AddSubgroup.coe_add, selfAdjoint.val_smul, smul_neg, AddSubgroupClass.coe_sub] simp only [neg_add, add_assoc, sub_eq_add_neg] · simp_all only [Finset.coe_univ, Finsupp.supported_univ, Submodule.mem_top] lemma toSelfAdjointMatrix_apply_coe (x : LorentzVector 3) : (toSelfAdjointMatrix x).1 = x (Sum.inl 0) • PauliMatrix.σ0 - x (Sum.inr 0) • PauliMatrix.σ1 - x (Sum.inr 1) • PauliMatrix.σ2 - x (Sum.inr 2) • PauliMatrix.σ3 := by rw [toSelfAdjointMatrix_apply] rfl lemma toSelfAdjointMatrix_stdBasis (i : Fin 1 ⊕ Fin 3) : toSelfAdjointMatrix (LorentzVector.stdBasis i) = PauliMatrix.σSAL i := by rw [toSelfAdjointMatrix_apply] match i with | Sum.inl 0 => simp only [LorentzVector.stdBasis, Fin.isValue] erw [Pi.basisFun_apply] simp [PauliMatrix.σSAL, PauliMatrix.σSAL'] | Sum.inr 0 => simp only [LorentzVector.stdBasis, Fin.isValue] erw [Pi.basisFun_apply] simp only [Fin.isValue, ne_eq, reduceCtorEq, not_false_eq_true, Pi.single_eq_of_ne, zero_smul, Pi.single_eq_same, one_smul, zero_sub, Sum.inr.injEq, one_ne_zero, sub_zero, Fin.reduceEq, PauliMatrix.σSAL, Basis.coe_mk, PauliMatrix.σSAL'] rfl | Sum.inr 1 => simp only [LorentzVector.stdBasis, Fin.isValue] erw [Pi.basisFun_apply] simp only [Fin.isValue, ne_eq, reduceCtorEq, not_false_eq_true, Pi.single_eq_of_ne, zero_smul, Sum.inr.injEq, zero_ne_one, sub_self, Pi.single_eq_same, one_smul, zero_sub, Fin.reduceEq, sub_zero, PauliMatrix.σSAL, Basis.coe_mk, PauliMatrix.σSAL'] rfl | Sum.inr 2 => simp only [LorentzVector.stdBasis, Fin.isValue] erw [Pi.basisFun_apply] simp only [Fin.isValue, ne_eq, reduceCtorEq, not_false_eq_true, Pi.single_eq_of_ne, zero_smul, Sum.inr.injEq, Fin.reduceEq, sub_self, Pi.single_eq_same, one_smul, zero_sub, PauliMatrix.σSAL, Basis.coe_mk, PauliMatrix.σSAL'] rfl @[simp] lemma toSelfAdjointMatrix_symm_basis (i : Fin 1 ⊕ Fin 3) : toSelfAdjointMatrix.symm (PauliMatrix.σSAL i) = (LorentzVector.stdBasis i) := by refine (LinearEquiv.symm_apply_eq toSelfAdjointMatrix).mpr ?_ rw [toSelfAdjointMatrix_stdBasis] open minkowskiMetric in lemma det_eq_ηLin (x : LorentzVector 3) : det (toSelfAdjointMatrix x).1 = ⟪x, x⟫ₘ := by rw [toSelfAdjointMatrix_apply_coe] simp only [Fin.isValue, eq_time_minus_inner_prod, LorentzVector.time, LorentzVector.space, PiLp.inner_apply, Function.comp_apply, RCLike.inner_apply, conj_trivial, Fin.sum_univ_three, ofReal_sub, ofReal_mul, ofReal_add] simp only [Fin.isValue, PauliMatrix.σ0, smul_of, smul_cons, real_smul, mul_one, smul_zero, smul_empty, PauliMatrix.σ1, of_sub_of, sub_cons, head_cons, sub_zero, tail_cons, zero_sub, sub_self, zero_empty, PauliMatrix.σ2, smul_neg, sub_neg_eq_add, PauliMatrix.σ3, det_fin_two_of] ring_nf simp only [Fin.isValue, I_sq, mul_neg, mul_one] ring end end SpaceTime